Abstract: Ballasted tracks are the commonly used railway track systems with constant demands for reducing maintenance cost and improved performance. Elastic layers are increasingly used for improving ballasted tracks. In order to better understand the effects of elastic layers, physical understanding at the ballast particle level is crucial. Here, discrete element method (DEM) is used to investigate the effects of elastic layers - under sleeper pad ( ) at the sleeper/ballast interface and under ballast mat ( ) at the ballast/bottom interface - on micro-mechanical behavior of railway ballast. In the DEM model, the Conical Damage Model (CDM) is used for contact modelling. This model was calibrated in Suhr et al. (Granul Matter 20(4):70, 2018) for the simulation of two different types of ballast. The CDM model accounts for particle edge breakage, which is an important phenomenon especially at the early stage of a tamping cycle, and thus essential, when investigating the impact of elastic layers in the ballast bed. DEM results confirm that during cyclic loading, reduces the edge breakage at the sleeper/ballast interface. On the other hand, shows higher particle movement throughout the ballast bed. Both the edge breakage and particle movement in the ballast bed are found to influence the sleeper settlement. Micro-mechanical investigations show that the force chain in deeper regions of the ballast bed is less affected by for the two types of ballast. Conversely, dense lateral forces near to the box bottom were seen with . The findings are in good (qualitative) agreement with the experimental observations. Thus, DEM simulations can aid to better understand the micro-macro phenomena for railway ballast. This can help to improve the track components and track design based on simulation models taking into account the physical behavior of ballast.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6813763PMC
http://dx.doi.org/10.1007/s10035-019-0956-9DOI Listing

Publication Analysis

Top Keywords

elastic layers
20
ballast bed
16
ballast
13
railway ballast
12
effects elastic
12
edge breakage
12
cyclic loading
8
layers ballast
8
ballasted tracks
8
better understand
8

Similar Publications

Phytic Acid-Induced Gradient Hydrogels for Highly Sensitive and Broad Range Pressure Sensing.

Adv Mater

January 2025

Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.

Ionic conductive hydrogels have emerged as an excellent option for constructing dielectric layers of interfacial iontronic sensors. Among these, gradient ionic hydrogels, due to the intrinsic gradient elastic modulus, can achieve a wide range of pressure responses. However, the fabrication of gradient hydrogels with optimal mechanical and sensing properties remains a challenge.

View Article and Find Full Text PDF

Structural and photoelectric properties of p-i-n photodiodes based on GeSiSn/Si multiple quantum dots both on Si and silicon-on-insulator (SOI) substrates were investigated. Elastic strained state of grown films was demonstrated by x-ray diffractometry. Annealing of p-i-n structures before the mesa fabrication can improve the ideality factor of current-voltage characteristics.

View Article and Find Full Text PDF

This work is focused on the impact of temperature and deformation on the mechanical properties, specifically the elastic modulus () of the amorphous regions in semicrystalline polymers, using polypropylene as a case study. It has been shown that increasing temperature results in an decrease due to the enhanced mobility of polymer chains, triggered by the activation of α relaxation processes within the crystalline component. Consequently, rising temperature reduces the "stiffening" effect of the crystalline regions on the interlamellar layers.

View Article and Find Full Text PDF

Recent studies have attempted to characterize the layer-specific mechanical and microstructural properties of the aortic tissues in either normal or pathological state to understand its structural-mechanical property relationships. However, layer-specific tissue mechanics and compositions of normal and dissected ascending aortas have not been thoroughly compared with a statistical conclusion obtained. Eighteen ascending aortic specimens were harvested from 13 patients with type A aortic dissection and 5 donors without aortic diseases, with each specimen further excised to obtain three tissue samples including an intact wall, an intima-media layer and an adventitia layer.

View Article and Find Full Text PDF

Purpose: To evaluate the posterior scleral stiffness of different regions in high myopic eyes and to explore its associations with macular choroidal and peripapillary retinal nerve fiber layer (pRNFL) thickness and vasculature.

Methods: Thirty subjects with high myopic eyes and 30 subjects with low myopic eyes were included in this study. The elastic modulus of the macular and peripapillary sclera at the temporal, nasal, superior and inferior regions were determined via shear wave elastography (SWE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!