Unlike juveniles, adult animals engage in suites of behaviors related to the search for and selection of potential mates and mating, including appropriate responses to sex pheromones. As in other species [1], male sex pheromones modulate several behaviors and physiological processes in C. elegans hermaphrodites [2-5]. In particular, one of these small-molecule signals, an ascaroside ascr#10, causes reduced exploration, more avid mating, and improved reproductive performance (see the accompanying paper by Aprison and Ruvinsky in this issue of Current Biology) [6]. Here, we investigated the mechanism that restricts pheromone response to adult hermaphrodites. Unexpectedly, we found that attainment of developmental adulthood was not alone sufficient for the behavioral response to the pheromone. To modify exploratory behavior in response to male pheromone, adult hermaphrodites also require functional germline and egg-laying apparatus. We show that this dependence of behavior on the reproductive system is due to feedback from the vulva muscles that reports ongoing reproduction to the nervous system. Our results reveal an activity-dependent conduit by which the reproductive system continuously licenses adult behaviors, including appropriate responses to the pheromones of the opposite sex. More broadly, our results suggest that signals from peripheral organs may serve as an important component of assuring age-appropriate functions of the nervous system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6907730 | PMC |
http://dx.doi.org/10.1016/j.cub.2019.10.011 | DOI Listing |
Sci Rep
January 2025
Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland.
Optical techniques, such as functional near-infrared spectroscopy (fNIRS), contain high potential for the development of non-invasive wearable systems for evaluating cerebral vascular condition in aging, due to their portability and ability to monitor real-time changes in cerebral hemodynamics. In this study, thirty-six healthy adults were measured by single channel fNIRS to explore differences between two age groups using machine learning (ML). The subjects, measured during functional magnetic resonance imaging (fMRI) at Oulu University Hospital, were divided into young (age ≤ 32) and elderly (age ≥ 57) groups.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan.
Recently, exposure to sounds with ultrasound (US) components has been shown to modulate brain activity. However, the effects of US on emotional states remain poorly understood. We previously demonstrated that the olfactory bulbectomized (OBX) rat depression model is suitable for examining the effects of audible sounds on emotionality.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Neurology, Peking University First Hospital, Beijing, People's Republic of China.
Persistent Postural-Perceptual Dizziness (PPPD) is a common cause of chronic vestibular syndrome. Although previous studies have identified central abnormalities in PPPD, the specific neural circuits and the alterations in brain network topological properties, and their association with dizziness and postural instability in PPPD remain unclear. This study includes 30 PPPD patients and 30 healthy controls.
View Article and Find Full Text PDFSci Rep
January 2025
HeartMath Institute, Boulder Creek, CA, 95006, USA.
This global study analyzed data from the largest dataset ever studied in the Heart Rate Variability (HRV) biofeedback field, comprising 1.8 million user sessions collected from users of a mobile app during 2019 and 2020. We focused on HRV Coherence, which is linked to improved emotional stability and cognitive function.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, United States.
There are few in vitro models available to study microglial physiology in a homeostatic context. Recent approaches include the human induced pluripotent stem cell model, but these can be challenging for large-scale assays and may lead to batch variability. To advance our understanding of microglial biology while enabling scalability for high-throughput assays, we developed an inducible immortalized murine microglial cell line using a tetracycline expression system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!