In animals with fur or feather coats, heat gain from solar radiation is a function of coat optical, structural, and insulative characteristics, as well as skin color and the optical properties of individual hairs or feathers. In this analysis, I explore the roles of these factors in determining solar heat gain in two desert rodents (the Harris antelope squirrel, Ammospermophilus harrisi, and the round-tailed ground squirrel, Spermophilus tereticaudus). Both species are characterized by black dorsal skin, though they contrast markedly in their general coat thickness and structure. Results demonstrate that changes in coat structure and hair optics can produce differences of up to 40% in solar heat gain between animals of similar color. This analysis also confirms that the model of Walsberg et al. (1978) accurately predicts radiative heat loads within about 5% in most cases. Simulations using this model indicate that dark skin coloration increases solar heat gain by less than or equal to 5%. However, dark skin significantly reduces ultraviolet transmission to levels about one-sixth of those of the lighter ventral skin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF01075835 | DOI Listing |
PLoS One
December 2024
The First Clinical Medical College, Southern Medical University, Guangzhou, Guangdong, China.
Objective: In this retrospective analysis, we explored the clinical characteristics and risk factors of secondary infections in patients with severe heatstroke with the aim to gain epidemiological insights and identify risk factors for secondary infections.
Method: The study included 129 patients with severe heatstroke admitted to the General Hospital of the Southern Theater Command of the PLA between January 1, 2011, and December 31, 2021. Patients were divided into an infection group (n = 24) and a non-infection group (n = 105) based on infection occurrence within 48 h of intensive care unit (ICU) admission.
PLoS One
December 2024
CIBIO, Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Vila do Conde, Portugal.
Thermoregulating ectotherms may resort to different external heat sources to modulate their body temperature through an array of behavioural and physiological adaptations which modulate heat exchange with the environment and its distribution across the animal's body. Even small-bodied animals are capable of fine control over such rates and the subsequent re-allocation of heat across the body. Such thermal exchanges with the environment usually happen through two non-mutually exclusive modes: heliothermy (radiant heat gain from the sun) or thigmothermy (heat gained or lost via conduction).
View Article and Find Full Text PDFFront Vet Sci
December 2024
Research Group in Bioclimatology, Ethology and Animal Welfare (BioEt), Department of Animal Science, Federal University of Paraiba, Areia, Paraiba, Brazil.
The present study aimed to evaluate the effects of different nutritional plans on meat quails subjected to heat stress. A total of 324 quails male European quails () were used, with an average initial weight of 121.48 g ± 3.
View Article and Find Full Text PDFJ Therm Biol
October 2024
National Institute of Animal Science, Rural Development of Administration (NIAS-RDA), Wanju-gun, 55365, Republic of Korea. Electronic address:
High environmental temperatures lead to metabolic changes, body weight reduction, and high mortality in chickens, affecting poultry production worldwide. This study aimed to evaluate the effects of heat stress, assessed by the temperature-humidity index (THI), on the growth performance, physiological response, carcasses, and hematological traits of broilers. A total of 200 broilers (between 17 and 31 days old) were kept in thermoneutral conditions (21 °C; 60% relative humidity, RH) for 3 days during the adaptation period, followed by 14 days of exposure to the experimental treatments.
View Article and Find Full Text PDFBrain Behav Immun
December 2024
Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA. Electronic address:
The prevalence of noncommunicable inflammatory disease is increasing in modern urban societies, posing significant challenges to public health. Novel prevention and therapeutic strategies are needed to effectively deal with this issue. One promising approach is leveraging microorganisms such as Mycobacterium vaccae ATCC 15483, known for its anti-inflammatory, immunoregulatory, and stress-resilience properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!