Conventional anaerobic digesters intended for the production of biogas usually operate in complete darkness. Therefore, little is known about the effect of light on their microbial communities. In the present work, 16S rRNA gene amplicon Nanopore sequencing and shotgun metagenomic sequencing were used to study the taxonomic and functional structure of the microbial community forming a biofilm on the inner wall of a laboratory-scale transparent anaerobic biodigester illuminated with natural sunlight. The biofilm was composed of microorganisms involved in the four metabolic processes needed for biogas production, and it was surprisingly rich in Rhodopseudomonas faecalis, a versatile bacterium able to carry out photoautotrophic metabolism when grown under anaerobic conditions. The results suggested that this bacterium, which is able to fix carbon dioxide, could be considered for use in transparent biogas fermenters in order to contribute to the production of optimized biogas with a higher CH:CO ratio than the biogas produced in regular, opaque digesters. To the best of our knowledge, this is the first study characterising the phototrophic biofilm associated with illuminated bioreactors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.syapm.2019.126024 | DOI Listing |
Water Sci Technol
January 2025
The Institute of Applied Research, The Galilee Society, Shefa-Amr 2020000, Israel; Agrobics Ltd, Shefa-Amr 2020000, Israel; Prof. Ephraim Katzir Department of Biotechnology Engineering, Braude College of Engineering, Karmiel 2161002, Israel.
The advanced anaerobic technology (AAT), developed based on an immobilized high-rate anaerobic reactor, was applied as a pretreatment of municipal wastewater (WW) at Karmiel's treatment plant in Israel. The demonstration-scale AAT (21 m) system was operated at a flow rate of 100 mday municipal WW mixed with olive mill wastewater (OMW) (0.5 mday) to simulate the scenario of illegal discharge of agro-industrial WW.
View Article and Find Full Text PDFWater Sci Technol
January 2025
Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora (ITSON), 5 de Febrero 818 sur, Ciudad Obregón, Sonora 85000, México E-mail:
Granular activated carbon (GAC) and GAC modified with anthraquinone-2-sulfonate (AQS) were used as conductive materials during the anaerobic digestion of swine wastewater (SW). The electron transfer capacity (ETC) in the GAC-AQS was 2.1-fold higher than the unmodified GAC.
View Article and Find Full Text PDFBioresour Technol
January 2025
School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China. Electronic address:
Carbon chain elongation offers a promising pathway for converting waste resources into caproate. However, challenges in yield and selectivity have limited its broader application. To address these limitations, anaerobically digested sludge-derived biochar (ADS-B) was incorporated into the carbon chain elongation process.
View Article and Find Full Text PDFJ Environ Manage
January 2025
CALAGUA - Unitat Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, Burjassot, Valencia, 46100, Spain.
Most microplastics (MPs) end up in the biosolids produced in wastewater treatment plants (WWTPs) and can pose contamination risks when the biosolids are applied to agriculture. This study evaluated the impact of mesophilic anaerobic digestion on the fate of MPs in WWTP sludge. For this, two laboratory-scale anaerobic digesters were operated in parallel, consisting of a continuous stirred tank reactor (CSTR) and a membrane bioreactor (AnMBR) equipped with an ultrafiltration membrane to decouple the hydraulic and sludge retention times.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
Pyrogenic carbons (PCs), with varying structures depending on the materials and thermal treatment conditions, have been extensively used to enhance anaerobic digestion by mediating electron transfer. However, the underlying mechanism has yet to be explored. Herein, the redirection and enhancement of the direct interspecies electron transfer (DIET) pathway were evidenced, along with the upregulated electrochemical properties and structural proteins in the methanogenic consortia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!