Background: A small proportion of the population consumes the majority of health care resources. High-cost health care users are a heterogeneous group. We aim to segment a provincial population into relevant homogenous sub-groups to provide actionable information on risk factors associated with high-cost health care use within sub-populations.

Methods: The Canadian Institute for Health Information (CIHI) Population Grouping methodology was used to define mutually exclusive and clinically relevant health profile sub-groups. High-cost users (> = 90th percentile of health care spending) were defined within each sub-group. Univariate analyses explored demographic, socio-economic status, health status and health care utilization variables associated with high-cost use. Multivariable logistic regression models were constructed for the costliest health profile groups.

Results: From 2015 to 2017, 1,175,147 individuals were identified for study. High-cost users consumed 41% of total health care resources. Average annual health care spending for individuals not high-cost were $642; high-cost users were $16,316. The costliest health profile groups were 'long-term care', 'palliative', 'major acute', 'major chronic', 'major cancer', 'major newborn', 'major mental health' and 'moderate chronic'. Both 'major acute' and 'major cancer' health profile groups were largely explained by measures of health care utilization and multi-morbidity. In the remaining costliest health profile groups modelled, 'major chronic', 'moderate chronic', 'major newborn' and 'other mental health', a measure of socio-economic status, low neighbourhood income, was statistically significantly associated with high-cost use.

Interpretation: Model results point to specific, actionable information within clinically meaningful subgroups to reduce high-cost health care use. Health equity, specifically low socio-economic status, was statistically significantly associated with high-cost use in the majority of health profile sub-groups. Population segmentation methods, and more specifically, the CIHI Population Grouping Methodology, provide specificity to high-cost health care use; informing interventions aimed at reducing health care costs and improving population health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6842471PMC
http://dx.doi.org/10.1186/s12939-019-1074-3DOI Listing

Publication Analysis

Top Keywords

health care
44
health profile
24
health
22
high-cost health
16
associated high-cost
16
care
12
population grouping
12
grouping methodology
12
high-cost users
12
socio-economic status
12

Similar Publications

COLOFIT: Development and Internal-External Validation of Models Using Age, Sex, Faecal Immunochemical and Blood Tests to Optimise Diagnosis of Colorectal Cancer in Symptomatic Patients.

Aliment Pharmacol Ther

January 2025

Gastrointestinal and Liver Theme, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre (BRC), Nottingham University Hospitals NHS Trust and the University of Nottingham, School of Medicine, Queen's Medical Centre, Nottingham, UK.

Background: Colorectal cancer (CRC) is the third most common cancer in the United Kingdom and the second largest cause of cancer death.

Aim: To develop and validate a model using available information at the time of faecal immunochemical testing (FIT) in primary care to improve selection of symptomatic patients for CRC investigations.

Methods: We included all adults (≥ 18 years) referred to Nottingham University Hospitals NHS Trust between 2018 and 2022 with symptoms of suspected CRC who had a FIT.

View Article and Find Full Text PDF

Incidence of fall-from-height injuries and predictive factors for severity.

J Osteopath Med

January 2025

McAllen Department of Trauma, South Texas Health System, McAllen, TX, USA.

Context: The injuries caused by falls-from-height (FFH) are a significant public health concern. FFH is one of the most common causes of polytrauma. The injuries persist to be significant adverse events and a challenge regarding injury severity assessment to identify patients at high risk upon admission.

View Article and Find Full Text PDF

Methodological description of knowledge translation: Implementation of clinical practice guidelines into clinical practice.

PM R

January 2025

Board Certified Clinical Specialist in Oncological Physical Therapy, Board Certified Clinical Specialist in Women's Health Physical Therapy, LANA Certified Lymphedema Therapist, Select Medical, ReVital Cancer Rehabilitation, Mechanicsburg, Pennsylvania, USA.

This methodological paper explores the intricacies of implementing evidence-based medicine in the health care sector specifically focusing on the clinical practice guideline (CPG) published by the American Physical Therapy Association's Academy of Oncologic Physical Therapy for diagnosing upper quadrant lymphedema secondary to cancer (diagnosis CPG). Although CPGs are widely available, their implementation into clinical practice remains inconsistent, slow, and complex. To address this challenge, this paper employs the Knowledge-to-Action framework, offering a detailed description of the seven stages through the lens of an in-progress case study on the implementation of the diagnosis CPG.

View Article and Find Full Text PDF

Introduction: The purpose of this study was to evaluate the association between body composition, overall survival, odds of receiving treatment, and patient-reported outcomes (PROs) in individuals living with metastatic non-small-cell lung cancer (mNSCLC).

Methods: This retrospective analysis was conducted in newly diagnosed patients with mNSCLC who had computed-tomography (CT) scans and completed PRO questionnaires close to metastatic diagnosis date. Cox proportional hazard models and logistic regression evaluated overall survival and odds of receiving treatment, respectively.

View Article and Find Full Text PDF

Aim: Dynamic cancer control is a current health system priority, yet methods for achieving it are lacking. This study aims to review the application of system dynamics modeling (SDM) on cancer control and evaluate the research quality.

Methods: Articles were searched in PubMed, Web of Science, and Scopus from the inception of the study to November 15th, 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!