Conformational conversion of the cellular isoform of prion protein, designated PrP, into the abnormally folded, amyloidogenic isoform, PrP, is an essential pathogenic event in prion diseases. However, the exact conversion mechanism remains largely unknown. Lines of evidence indicate that the N-terminal domain, which includes the N-terminal, positively charged polybasic region and the octapeptide repeat (OR) region, is important for PrP to convert into PrP after infection with prions. To further gain insights into the role of the polybasic region and the OR region in prion pathogenesis, we generated two different transgenic mice, designated Tg(PrP3K3A)/Prnp and Tg(PrP3K3A∆OR)/Prnp mice, which express PrP with lysine residues at codons 23, 24, and 27 in the polybasic region mutated with or without a deletion of the OR region on the Prnp background, respectively, and intracerebrally inoculated them with RML and 22L prions. We show that Tg(PrP3K3A)/Prnp mice were highly resistant to the prions, indicating that lysine residues at 23, 24, and 27 could be important for the polybasic region to support prion infection. Tg(PrP3K3A∆OR)/Prnp mice also had reduced susceptibility to RML and 22L prions equivalent to Tg(PrP3K3A)/Prnp mice. The pre-OR region, including the polybasic region, of PrP3K3A∆OR, but not PrP3K3A, was unusually converted to a protease-resistant structure during conversion to PrP3K3A∆OR. These results suggest that, while the OR region could affect the conformation of the polybasic region during conversion of PrP into PrP, the polybasic region could play a crucial role in prion pathogenesis independently of the OR region.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12035-019-01804-5 | DOI Listing |
PLoS Genet
December 2024
Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
Virology
December 2024
Department of Pediatrics, Vanderbilt University Medical Center, 2200 Children's Way, Suite 2404, Nashville, TN, 37232, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Suite D-2220, Nashville, TN, 37232, USA. Electronic address:
Fusion-associated small transmembrane (FAST) proteins are nonstructural viral proteins that induce cell-cell fusion. FAST proteins, which previously were identified in the genomes of double-stranded RNA viruses, typically contain an acylated N-terminal ectodomain, central transmembrane domain, and C-terminal endodomain with a polybasic region. Using sequence homology and protein motif prediction, we identified accessory proteins in a subset of avian deltacoronaviruses as putative FAST proteins.
View Article and Find Full Text PDFElife
September 2024
School of Bioscience, University of Sheffield, Sheffield, United Kingdom.
Viruses
August 2024
Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Col. San Pedro Zacatenco, Mexico City 07360, Mexico.
(FCV), an important model for studying the biology of the family, encodes the leader of the capsid (LC) protein, a viral factor known to induce apoptosis when expressed in a virus-free system. Our research has shown that the FCV LC protein forms disulfide bond-dependent homo-oligomers and exhibits intrinsic toxicity; however, it lacked a polybasic region and a transmembrane domain (TMD); thus, it was initially classified as a non-classical viroporin. The unique nature of the FCV LC protein, with no similarity to other proteins beyond the genus, has posed challenges for bioinformatic analysis reliant on sequence similarity.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
October 2024
São Carlos Institute of Physics, University of São Paulo, São Carlos, SP 13560-970, Brazil. Electronic address:
Septins are cytoskeletal proteins and their interaction with membranes is crucial for their role in various cellular processes. Septins have polybasic regions (PB1 and PB2) which are important for lipid interaction. Earlier, we and others have highlighted the role of the septin C-terminal domain (CTD) to membrane interaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!