A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A new concept for verifying the isocentric alignment of the proton-rotational gantry for radiation control. | LitMetric

The purpose of this study was to introduce the modified Winston-Lutz (mWL) test and to evaluate its feasibility. This is a new method to completely absorb the proton beam around the isocenter inside a phantom for radiation control. The mWL test was performed using a 14-cm-diameter acrylic Lucy 3D QA Phantom for a passive-scattering proton beam gantry. The energy of the unmodulated proton beam was adjusted such that the residual range was < 130 mm, and the energy of the proton beam was completely lost around the isocenter. The radiation field was formed with a multi-leaf collimator at 8.6 × 8.6 mm in the isocenter plane. The phantom was loaded with a 4-mm-diameter tungsten ball, and the EBT3 was set up at the isocenter. The proton beam was irradiated at gantry angles with 45° steps, and the isocenter deviation of the proton beam was measured and subsequently analyzed. Although the radiation field penumbra was blurred under the influence of scattered radiation due to placement in the phantom compared to the traditional WL test placed in the air, evaluation of the beam axis accuracy was possible. The results confirmed that the maximum total displacement was less than 0.9 mm, and the specifications of the device were met. The mWL test is feasible and effective to reduce the building activation in proton beam treatment facilities. Thus, it can be considered a useful method that sufficiently satisfies the shielding calculation conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12194-019-00544-4DOI Listing

Publication Analysis

Top Keywords

proton beam
12
radiation control
8
mwl test
8
concept verifying
4
verifying isocentric
4
isocentric alignment
4
alignment proton-rotational
4
proton-rotational gantry
4
gantry radiation
4
control purpose
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!