Introduction: Phospholipases are enzymes that occur in many types of human cells, including mast cells, and play an important role in the molecular background of asthma pathogenesis, and the development of inflammation NF-κB activities that affect numerous biological processes has been reported in many inflammatory diseases including asthma. Vitamin D is a widely studied factor that affects many diseases, including asthma. The aim of this study is to assess the influence of 1,25-(OH)2D3 on regulation of chosen phospholipase-A2 (PLA2) expression-selected inflammation mediators.

Methods: LUVA mast cells were stimulated with 1,25(OH)2D3, and inhibitors of NF-κB p65 and ubiquitination. Expression analysis of phospholipases (PLA2G5, PLA2G10, PLA2G12, PLA2G15, PLA2G4A, PLA2G4B, PLA2G4C, PLAA, NF-κB p65, and UBC) was done utilizing real-time PCR and Western blot. Eicosanoid (LTC4, LXA4, 15[S]-HETE, and PGE2) levels and sPLA2 were also measured.

Results: We found that 1,25(OH)2D3 decreased the expression of PLA2G5, PLA2G15, PLA2G5,UBC, and NF-κB p65 but increased expression of PLAA and PLA2G4C (p < 0.05). Moreover, the expression of PLA2G5 and PLA2G15 decreased after inhibition of NF-κB p65 and UBC. Increased levels of released LXA4 and 15(S)-HETE, decreased levels of LTC4, and sPLA2s enzymatic activity in response to 1,25(OH)2D3 were also observed. Additionally, NF-κB p65 inhibition led to an increase in the LXA4 concentration.

Conclusion: Future investigations will be needed to further clarify the role of 1,25(OH)2D3 in the context of asthma and the inflammatory process; however, these results confirm a variety of effects which can be caused by this vitamin. 1,25(OH)2D3-mediated action may result in the development of new therapeutic strategies for asthma treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000503628DOI Listing

Publication Analysis

Top Keywords

nf-κb p65
20
mast cells
12
diseases including
8
including asthma
8
p65 ubc
8
expression pla2g5
8
pla2g5 pla2g15
8
nf-κb
6
125oh2d3
5
asthma
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!