Gegen Qinlian Decoction Downregulates the TLR7 Signalling Pathway to Control Influenza A Virus Infection.

Biomed Pharmacother

College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, China. Electronic address:

Published: January 2020

Ethnopharmacological Relevance: In recent years, Gegen Qinlian decoction (GQD) has been applied to treat influenza virus infection, and its clinical effectiveness has been shown. However, the potential mechanism by which GQD acts on influenza A virus (IAV) has not been fully elucidated. Traditional Chinese medicine (TCM) formulas are well known to have multiple targets and effects. Our previous experiments examined the mechanism by which TCM can be used to treat influenza from the perspective of the influenza immune mechanism.

Aim Of The Study: To explore the possible mechanism by which GQD affects mice infected with the FM1 strain of influenza virus.

Materials And Methods: Forty-eight C57BL/6 mice were divided randomly into four groups: a normal control (NG) group, an IAV infection (VG) group, an IAV + oseltamivir (30.44 mg/kg) treatment (VO) group, and an IAV + GQD (9.74 g/kg) treatment (VQ) group. We also grouped forty-eight Toll-like receptor 7 knockout (TLR7) mice in the same manner. The pulmonary mRNA expression of TLR7, myeloid differentiation factor 88 (MyD88), and nuclear factor (NF)-κB p65 was measured by RT-qPCR, and the pulmonary protein expression of TLR7, MyD88, and NF-κB p65 was measured by western blot. The proportions of T helper (Th) 1, Th2, Th17 and regulatory T (Treg) cells were measured by flow cytometry.

Results: IAV infection led to low body weights and high viral load. Compared with those in the NG group, the mRNA expression levels of TLR7, MyD88, and NF-κB p65 in the VG group were upregulated (P < 0.05). However, the mRNA and protein expression levels of TLR7, MyD88, and NF-κB p65 were lower in the VO and VQ groups than in the VG group (P < 0.05). IAV infection led to increased proportions of Th1/Th2 and Th17/Treg cells in the VG group. In the VO and VQ groups, both Th2 and Th1 cell numbers were increased, resulting in a lower Th1/Th2 proportion than that in the VG group.

Conclusions: GQD downregulated the expression of some key TLR signalling pathway factors. GQD also affected the differentiation of CD4 T cells, thereby exerting a protective systemic effect on influenza virus infection. In conclusion, GQD activated a balanced inflammatory response in the host to limit immune pathological injury and improve clinical and survival outcomes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2019.109471DOI Listing

Publication Analysis

Top Keywords

influenza virus
12
nf-κb p65
12
gegen qinlian
8
qinlian decoction
8
virus infection
8
treat influenza
8
mechanism gqd
8
iav infection
8
treatment group
8
mrna expression
8

Similar Publications

Influenza A virus NS2 protein acts on vRNA-resident polymerase to drive the transcription to replication switch.

Nucleic Acids Res

January 2025

CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.

The heterotrimeric RNA-dependent RNA polymerase (RdRp) of influenza A virus catalyzes viral RNA transcription (vRNA→mRNA) and replication (vRNA→cRNA→vRNA) by adopting different conformations. A switch from transcription to replication occurs at a relatively late stage of infection. We recently reported that the viral NS2 protein, expressed at later stages from a spliced transcript of the NS segment messenger RNA (mRNA), inhibits transcription, promotes replication and plays a key role in the transcription-to-replication switch.

View Article and Find Full Text PDF

Mucus is a complex hydrogel that acts as a defensive and protective barrier in various parts of the human body. The rise in the level of viral infections has underscored the importance of advancing research into mucus-mimicking hydrogels for the efficient design of antiviral agents. Herein, we demonstrate the gram-scale synthesis of biocompatible, lignin-based virus-binding inhibitors that reduce waste and ensure long-term availability.

View Article and Find Full Text PDF

Infection with Influenza A virus (IAV) induces severe inflammatory responses and lung injury, contributing significantly to mortality and morbidity rates. Alterations in the microbial composition of the lungs and intestinal tract resulting from infection could influence disease progression and treatment outcomes. Xiyanping (XYP) injection has demonstrated efficacy in clinical treatment across various viral infections.

View Article and Find Full Text PDF

Influenza causes 100,000-710,000 hospitalizations annually in the U.S. Patients with liver disease are at higher risk of severe outcomes following influenza infection.

View Article and Find Full Text PDF

IRF1-RIG-I signaling defects in the aged alveolar epithelial cells may contribute to decreased pulmonary antiviral immune responses.

Mech Ageing Dev

January 2025

CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; School of Life Sciences, Henan University, Kaifeng, Henan Province, China; Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Henan University, Kaifeng, Henan Province 475004, China. Electronic address:

Background: Alveolar epithelial cells (AECs) are the primary targets of many pathogens and play an important role in sensing viruses and regulating immunity. Yet, little is known about the antiviral responses in the aged AECs.

Methods: The responses of young or aged AECs after viral infection were analyzed using methods such as flow cytometry, quantitative real-time PCR, Western blot detection, and transwell chemotaxis assay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!