Soybeans are a complete nutritional resource and soybean proteins are known to affect lipid metabolism via multiple mechanisms. Soybean meal (SBM) is produced after extraction of soybean oil and in this study, we investigated the ability whether the SBM could prevent high fat diet-induced obesity and understand the underlying mechanisms. Male Sprague-Dawley rats, aged 5 weeks, were randomly divided into three groups (n=8 each) and fed one of three diets for 28 days: Cont (AIN-93G), HFD (high fat diet with 40% of calories derived from fat) and HFD+SBM (HFD with 30% SBM). White adipose tissue weight as well as plasma and hepatic triglycerides were significantly decreased in HFD+SBM rats. Expression of hepatic SREBP-1 and its target genes was significantly decreased in HFD+SBM rats. Meanwhile, expression of SHP gene expression was significantly increased in HFD+SBM, and there was a negative correlation between SHP and SREBP-1 expression. Together these results suggest that hepatic SREBP-1 gene expression is negatively regulated by SHP. Expression of PPARG, the transcriptional factor that regulates SHP expression, was increased in HFD+SBM rats. Furthermore, expression of genes controlled by PPARG/SHP, such as those involved in hepatic gluconeogenesis, was also significantly decreased in HFD+SBM rats. Therefore, in addition to the previous findings of SBM on obesity here we show an additional mechanism which by changing the expression of genes involved in lipid metabolism via the PPARG/SHP pathway in the liver.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jnutbio.2019.108250DOI Listing

Publication Analysis

Top Keywords

hfd+sbm rats
16
high fat
12
decreased hfd+sbm
12
rats expression
12
expression
9
fat diet-induced
8
diet-induced obesity
8
sprague-dawley rats
8
soybean meal
8
lipid metabolism
8

Similar Publications

The hypoglycemic and antioxidant activities of FPS 2520 and/or N1 fermented soybean meal (SBM) in rats fed a high-fat diet (HFD) were investigated by assessing plasma glucose levels, insulin resistance, and oxidative stress-induced organ damage. Supplementation with FPS 2520- and/or N1-fermented SBM (500 and 1000 mg/kg of body weight per day) to HFD-induced obese rats for 6 weeks significantly down-regulated the concentration of plasma glucose during the oral glucose tolerance test (OGTT), as well as the concentration of fasting plasma glucose, insulin, and the value of the homeostasis model assessment of insulin resistance (HOMA-IR). In addition, plasma and hepatic levels of malondialdehyde (MDA) were alleviated in rats fed fermented SBM, especially SBM fermented by mixed strains.

View Article and Find Full Text PDF

Single strain or mixed strains of FPS 2520 and N1 were used to ferment soybean meal (SBM), and the antiobesity activity of the fermented SBM product was investigated in rats fed with high-fat diet (HFD). After fermentation, free amino nitrogen, total peptide, and isoflavone contents were markedly raised, and genistein and daidzein were the major isoflavones in the fermented SBM. After fed with HFD for 10 weeks, obese Sprague-Dawley rats were orally treated with various fermented products for 6 weeks.

View Article and Find Full Text PDF

Soybeans are a complete nutritional resource and soybean proteins are known to affect lipid metabolism via multiple mechanisms. Soybean meal (SBM) is produced after extraction of soybean oil and in this study, we investigated the ability whether the SBM could prevent high fat diet-induced obesity and understand the underlying mechanisms. Male Sprague-Dawley rats, aged 5 weeks, were randomly divided into three groups (n=8 each) and fed one of three diets for 28 days: Cont (AIN-93G), HFD (high fat diet with 40% of calories derived from fat) and HFD+SBM (HFD with 30% SBM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!