Genetic deletion or knockdown of PTEN enables regeneration of CNS axons, enhances sprouting of intact axons after injury, and induces de novo growth of uninjured adult neurons. It is unknown, however how PTEN deletion in mature neurons alters neuronal physiology. As a first step to address this question, we used immunocytochemistry for activity-dependent markers to assess consequences of PTEN knockdown in cortical neurons and granule cells of the dentate gyrus. In adult rats that received unilateral intra-cortical injections of AAV expressing shRNA against PTEN, immunostaining for c-fos under resting conditions (home cage, HC) and after 1 h of exploration of a novel enriched environment (EE) revealed no hot spots of c-fos expression that would suggest abnormal activity. Counts revealed similar numbers of c-fos positive neurons in the area of PTEN deletion vs. homologous areas in the contralateral cortex in the HC and similar induction of c-fos with EE. However, IEG induction in response to high frequency stimulation (HFS) of the cortex was attenuated in areas of PTEN deletion. In rats with AAVshRNA-mediated PTEN deletion in the dentate gyrus, induction of the IEGs c-fos and Arc with HFS of the perforant path was abrogated in areas of PTEN deletion. Immunostaining using phosphospecific antibodies for phospho-S6 (a downstream marker for mTOR activation) and phospho-ERK1/2 revealed abrogation of S6 phosphorylation in PTEN-deleted areas but preserved activation of phosphorylation of ERK1/2. SIGNIFICANCE STATEMENT: Deletion or knockdown of the tumor suppressor gene PTEN enables regenerative growth of adult CNS axons after injury, which is accompanied by enhanced recovery of function. Consequently, PTEN represents a potential target for therapeutic interventions to enhance recovery after CNS injury. Here we show that activity-dependent IEG induction is attenuated in PTEN-depleted neurons. These findings raise the intriguing possibility that functional recovery due to regenerative growth may be limited by the disruption of plasticity-related signaling pathways, and that recovery might be enhanced by restoring PTEN expression after regenerative growth has been achieved.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7943064 | PMC |
http://dx.doi.org/10.1016/j.expneurol.2019.113098 | DOI Listing |
Cancers (Basel)
January 2025
Department of Cancer Pathomorphology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland.
Background: The phosphoinositide 3-kinase (PI3K) pathway is activated in multiple cancers. However, the significance of encoding the PI3K regulatory subunit, an inhibitor of the PI3K catalytic subunit encoded by , in ovarian cancer development is largely unknown.
Methods: Here, we investigated genomic alterations and gene expression by direct sequencing and qPCR methods in 197 ovarian cancers.
Cells
January 2025
IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
Abnormalities in the mammalian target of the rapamycin (mTOR) pathway have been implicated in numerous developmental brain disorders. While the molecular and histological abnormalities have been described, less is known about alterations in membrane and synaptic excitability with chronic changes in the mTOR pathway. In the present study, we used a conditional mouse model with a deletion of the phosphatase and tensin homologue (Pten, a negative regulator of mTOR) from cortical pyramidal neurons (CPNs).
View Article and Find Full Text PDFActa Neurobiol Exp (Wars)
January 2025
Laboratory of Animal Models, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) gene is a critical tumor suppressor that plays an essential role in the development and functionality of the central nervous system. Located on chromosome 10 in humans and chromosome 19 in mice, PTEN encodes a protein that regulates cellular processes such as division, proliferation, growth, and survival by antagonizing the PI3K‑Akt‑mTOR signaling pathway. In neurons, PTEN dephosphorylates phosphatidylinositol‑3,4,5‑trisphosphate (PIP3) to PIP2, thereby modulating key signaling cascades involved in neurogenesis, neuronal migration, and synaptic plasticity.
View Article and Find Full Text PDFAm J Case Rep
January 2025
Research Institute of Dentistry, Department of Integral Dental Clinics, University Center of Health Sciences, Universidad de Guadalajara, Guadalajara, Mexico.
BACKGROUND Cowden syndrome is a genetic disorder that predisposes individuals to cancer and is characterized by hamartomas derived from 3 germ layers. Although the clinical signs can be pathognomonic, diagnosis is often aided by biopsies, histopathological examination of oral and cutaneous lesions, and genetic studies, including multiple ligation-dependent probe amplification (MLPA). CASE REPORT We report a case of a 35-year-old woman who manifested with multiple lesions in the buccal mucosa, dorsum of the tongue, and gums, along with papillomatous papules on her facial skin and the dorsal surfaces of her hands.
View Article and Find Full Text PDFDiagn Pathol
January 2025
Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, Prague, 12800, Czech Republic.
Background: Juvenile granulosa cell tumor (JGCT) of the ovary is a rare tumor with distinct clinicopathological and hormonal features primarily affecting young women and children. We conducted a complex clinicopathological, immunohistochemical, and molecular analysis of five cases of JGCT.
Methods: The immunohistochemical examination was performed with 32 markers, including markers that have not been previously investigated.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!