Caffeic acid reduces A53T α-synuclein by activating JNK/Bcl-2-mediated autophagy in vitro and improves behaviour and protects dopaminergic neurons in a mouse model of Parkinson's disease.

Pharmacol Res

CAS Key Laboratory of Receptor Research, Department of Neuropharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan road, Beijing, 100049, China. Electronic address:

Published: December 2019

The human A53T mutant of α-synuclein tends to aggregate and leads to neurotoxicity in familial Parkinson's disease (PD). The aggregation of α-synuclein is also found in sporadic PD. Thus, targeting α-synuclein clearance could be used as a drug-discovery strategy for PD treatment. Caffeic acid (CA) has shown neuroprotection in Alzheimer's disease or cerebral ischaemia; however, it is unclear whether CA confers neuroprotection in α-synuclein-induced PD models. Here we focus on whether and how A53T α-synuclein is affected by CA. We assessed the effect of CA on cell viability in SH-SY5Y cells overexpressing A53T α-synuclein. Pathway-related inhibitors were used to identify the autophagy mechanisms. Seven-month-old A53T α-synuclein transgenic mice (A53T Tg mice) received CA daily for eight consecutive weeks. Behaviour tests including the buried food pellet test, the pole test, the Rotarod test, open field analysis, and gait analysis were used to evaluate the neuroprotective effect of CA. Tyrosine hydroxylase and α-synuclein were assessed by immunohistochemistry or western blot in the substantia nigra (SN). We found that CA alleviated the cell damage induced by overexpressing A53T α-synuclein and that CA reduced A53T α-synuclein by activating the JNK/Bcl-2-mediated autophagy pathway. The efficacy of CA on A53T α-synuclein degradation was reversed by the autophagy inhibitor bafilomycin A1 and the JNK inhibitor SP600125. In A53T Tg mice, CA improved behavioural impairments, attenuated loss of dopaminergic neurons, enhanced autophagy and reduced α-synuclein in the SN. Thus, the results provide scientific evidence for the neuroprotective effect of CA in PD. Our work lays the foundation for CA clinical trials to treat PD in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phrs.2019.104538DOI Listing

Publication Analysis

Top Keywords

a53t α-synuclein
28
α-synuclein
12
a53t
10
caffeic acid
8
α-synuclein activating
8
activating jnk/bcl-2-mediated
8
jnk/bcl-2-mediated autophagy
8
dopaminergic neurons
8
parkinson's disease
8
α-synuclein assessed
8

Similar Publications

Pathological significance of interaction of Synphilin-1 with mutated alpha-synuclein is well known to have serious consequences in causing the formation of inclusion bodies that are linked to Parkinson's disease (PD). Information extracted so far pointed out that specific mutations, A53T, A30P, and E46K, in alpha-synuclein promote such interactions. However, a detailed structural study of this interaction is pending due to the unavailability of the complete structures of the large protein Synphilin-1 of chain length 919 residues and the mutated alpha-synuclein having all the reported specific mutations so far.

View Article and Find Full Text PDF

Parkinson's disease (PD) is an age-related neurodegenerative pathology of the central nervous system. The well-known abnormalities characteristic of PD are dysfunctions in the nigrostriatal system including the substantia nigra of the midbrain and the striatum. Moreover, in PD persons, alpha-synucleinopathy is associated with abnormalities in the dopaminergic brain system.

View Article and Find Full Text PDF

Mitochondrial dysfunction and α-synuclein (αSyn) aggregation are key contributors to Parkinson's Disease (PD). While genetic and environmental risk factors, including mutations in mitochondrial-associated genes, are implicated in PD, the precise mechanisms linking mitochondrial defects to αSyn pathology remain incompletely understood, hindering the development of effective therapeutic interventions. Here, we identify the loss of branched chain ketoacid dehydrogenase kinase (BCKDK) as a mitochondrial risk factor that exacerbates αSyn pathology by disrupting Complex I function.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a neurodegenerative disorder involving the progressive loss of dopaminergic neurons in the substantia nigra pars compacta triggered by the accumulation of amyloid aggregates of α-synuclein protein. This study investigates the potential of Salvianolic Acid B (SalB), a water-soluble polyphenol derived from Salvia miltiorrhiza Bunge, in modulating the aggregation of the A53T mutant of α-synuclein (A53T Syn). This mutation is associated with rapid aggregation and a higher rate of protofibril formation in early-onset familial PD.

View Article and Find Full Text PDF

Transmission of Peripheral-blood α-Synuclein Fibrils Exacerbates Synucleinopathy and Neurodegeneration in Parkinson's Disease by Endothelial Lag3 Endocytosis.

Am J Physiol Cell Physiol

December 2024

Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.

Parkinson's disease (PD) is an age-related neurodegenerative disorder. The pathological feature of PD is abnormal alpha-synuclein (α-syn) formation and transmission. Recent evidence demonstrates that α-syn preformed fibrils (α-syn PFF) can be detected in the serum of PD patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!