A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Low-intensity pulsed ultrasound promotes spinal fusion by regulating macrophage polarization. | LitMetric

Low-intensity pulsed ultrasound promotes spinal fusion by regulating macrophage polarization.

Biomed Pharmacother

Department of Orthopedics Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China. Electronic address:

Published: December 2019

Background: Spinal fusion is considered the gold standard procedure for treating spinal degeneration, tumors, and trauma. An inflammatory response is an important part of bone repair. We investigated the polarization change of inflammatory macrophages (M1) and resident macrophages (M2) during low-intensity pulsed ultrasound (LIPUS) treatment.

Methods: Thirty male Sprague Dawley rats (age: 12 weeks; weight: 300 g) were used in the study. A rat spinal fusion model was established by surgical procedures. LIPUS treatment (20 min. d, 5 d/wk) was begun 3 days after surgery. The rats were randomly divided into a control group (5 subgroups, 3 rats in each subgroup) and LIPUS group (5 subgroups, 3 rats in each subgroup), and sacrificed on day 3, 5, 7, 10, and 14 after spinal fusion surgery for further evaluation. Bone volume was measured by micro-CT, fusion region was examined by histological analyses, types of macrophages in the fusion area were examined by immunohistochemical staining. Raw264.7 cells and bone marrow-derived macrophages (BMDM) were used in cell experiments. Cells were divided into a control group and LIPUS group. Flow cytometry was used to examine the rate of resident macrophages, and real-time PCR was used to examine the mRNA expression of anti-inflammation genes.

Results: LIPUS promoted spinal fusion and stimulated the transition of F4-80/Mac-2 (M1) to F4-80/Mac-2 (M2), leading to the early appearance of resident macrophages. Cell experiments showed CD206 macrophages (M2) were significantly increased after LIPUS treatment. M2-related genes and anti-inflammation factors (Arg-1, PPAR-γ, and IL-4) were increased after LIPUS treatment.

Conclusion: The earlier transition from inflammatory to resident macrophage might be one reason for the positive effect of LIPUS on spinal fusion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2019.109499DOI Listing

Publication Analysis

Top Keywords

spinal fusion
24
resident macrophages
12
low-intensity pulsed
8
pulsed ultrasound
8
fusion
8
lipus
8
lipus treatment
8
divided control
8
control group
8
group subgroups
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!