Airborne release of hazardous micron-sized metallic/metal oxide particles during thermal degradation of polycarbonate surfaces contaminated by particles: Towards a phenomenological description.

J Hazard Mater

Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES, SCA, Gif-Sur-Yvette, 91192, France.

Published: February 2020

The release of radioactive particles during fires is a key issue for the safety analysis of industrial nuclear facilities. Nevertheless, significant discrepancies exist between experimental measurements reported in the literature of airborne release fractions (ARF), expressed in terms of mass, and further discussions on the phenomenology of particles released from burning solid surfaces are needed. Experimental results are reported on the resuspension of metallic/metal oxide particles deposited on polycarbonate (PC) samples, representative of glove boxes used in the nuclear industry, under thermal degradation and for several particles deposit properties, i.e. equivalent volume diameter (D), density (ρ), morphology and number of mono-layer (N). A significant influence of D and ρ was identified, with a peak in ARF for diameters close to 6 μm and a decreasing ARF with increasing density. Furthermore, the particle deposit structure was identified as an influencing parameter, with ARF decreasing with increasing N up to nearly 0.3 and remaining constant above. Experimental results obtained in this study were compared with literature values to propose a phenomenological description of particles resuspension from burning PC surfaces. These findings open the way to a theoretical description of airborne release and to propose realistic surrogate to conduct large-scale fire experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2019.121490DOI Listing

Publication Analysis

Top Keywords

airborne release
12
metallic/metal oxide
8
oxide particles
8
thermal degradation
8
phenomenological description
8
particles
7
release hazardous
4
hazardous micron-sized
4
micron-sized metallic/metal
4
particles thermal
4

Similar Publications

Methane emissions from the Nord Stream subsea pipeline leaks.

Nature

January 2025

Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, China.

The amount of methane released to the atmosphere from the Nord Stream subsea pipeline leaks remains uncertain, as reflected in a wide range of estimates. A lack of information regarding the temporal variation in atmospheric emissions has made it challenging to reconcile pipeline volumetric (bottom-up) estimates with measurement-based (top-down) estimates. Here we simulate pipeline rupture emission rates and integrate these with methane dissolution and sea-surface outgassing estimates to model the evolution of atmospheric emissions from the leaks.

View Article and Find Full Text PDF

Airborne observations reveal the fate of the methane from the Nord Stream pipelines.

Nat Commun

January 2025

Deutsches Zentrum für Luft- und Raumfahrt e.V., Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany.

The Nord Stream pipeline leaks on 26 September 2022 released 465 ± 20 kt of methane into the atmosphere, which is the largest recorded transient anthropogenic methane emission event. While most of the gas escaped directly to the atmosphere, a fraction dissolved in the water. So far, studies on the fate of this dissolved methane rely on pipeline volumetric estimates or spatially sparse concentration measurements and ocean models.

View Article and Find Full Text PDF

Environmental impact of disposable face masks: degradation, wear, and cement mortar incorporation.

Environ Sci Pollut Res Int

January 2025

CERENA - Civil Engineering Research and Innovation for Sustainability, IST-ID, Av. António José de Almeida 12, 1049-001, Lisbon, Portugal.

Polypropylene (PP) disposable face masks (DFMs) are essential for limiting airborne infectious diseases. This study examines the behavior of DFMs under three scenarios: (i) exposure to the natural environment, (ii) simulated high-energy aquatic environments through an abrasion test, and (iii) incorporation into cement-based mortars. In the natural weathering experiment, after 117 days, the DFMs exhibited photodegradation, resulting in chemical alterations in carbonyl and hydroxyl groups.

View Article and Find Full Text PDF

Background: Environmental exposures such as airborne pollutant exposures and socio-economic indicators are increasingly recognized as important to consider when conducting clinical research using electronic health record (EHR) data or other sources of clinical data such as survey data. While numerous public sources of geospatial and spatiotemporal data are available to support such research, the data are challenging to work with due to inconsistencies in file formats and spatiotemporal resolutions, computational challenges with large file sizes, and a lack of tools for patient- or subject-level data integration.

Results: We developed FHIR PIT (HL7® Fast Healthcare Interoperability Resources Patient data Integration Tool) as an open-source, modular, data-integration software pipeline that consumes EHR data in FHIR® format and integrates the data at the level of the patient or subject with environmental exposures data of varying spatiotemporal resolutions and file formats.

View Article and Find Full Text PDF

Uptake and Transpiration of Solid and Hollow SiO Nanoparticles by Terrestrial Plant (Apium Graveolens var. secalinum).

Chemosphere

January 2025

Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China; Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China; HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, Guangdong Province, China. Electronic address:

Recent studies have raised concerns about the potential toxicity of amorphous silica (SiO) nanoparticles (NPs). This investigation explores the uptake, transport, and transpiration of silica NPs in Apium graveolens var. secalinum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!