The confluence area of river networks is a hot spot for pollutant removal. As an essential part of the river ecosystem, sediment bacterial communities played a crucial role in the removal of pollutants. However, how the potential of sediment bacterial communities can be enhanced toward the removal of pollutants remains unclear. Therefore, this study provides a new approach for the identification of key environmental factors that enhance the pollutant removal potential at a river confluence, integrating the bacteria-based index of biotic integrity (Ba-IBI), path model, support vector regression (SVR) model, and sensitivity analysis. The developed Ba-IBI could quantitatively evaluate the differences of both structure and function of bacterial communities before and after the confluence, with a range from 1.52 to 2.78. The flow regime, which was represented by the Froude number, exerted an indirect effect on Ba-IBI mediated through water nutrients and sediment nutrients according to path model results. Sediment nutrients and water nutrients were considered as the main environmental factors that directly affected sediment bacterial communities. A function that could predict the response of sediment bacterial communities to environmental factors in the best possible way was found through SVR modeling, with R = 0.8357. The results of the sensitivity analysis indicated that the total phosphorus in water and ammonia nitrogen in sediments were key environmental factors for enhancing the pollutant removal potential at the river confluence. The established approach aids the improvement of the bioremediation potential of river confluence area, and might provide a theoretical basis for watershed restoration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2019.108880 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
School of Cardiovascular and Metabolic Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, SE5 9NU London, UK.
Cardiovascular disease (CVD) is the most prevalent cause of mortality and morbidity in the Western world. A common underlying hallmark of CVD is the plaque-associated arterial thickening, termed atherosclerosis. Although the molecular mechanisms underlying the aetiology of atherosclerosis remain unknown, it is clear that both its development and progression are associated with significant changes in the pattern of DNA methylation within the vascular cell wall.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Cardiometabolic and Endocrine Institute, North Brunswick, NJ 08902, USA.
Human skin is a physical and biochemical barrier that protects the internal body from the external environment. Throughout a person's life, the skin undergoes both intrinsic and extrinsic aging, leading to microscopic and macroscopic changes in its morphology. In addition, the repair processes slow with aging, making the older population more susceptible to skin diseases.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, 17676 Athens, Greece.
Platelet aggregation and inflammation play a crucial role in atherothrombosis. Wine contains micro-constituents of proper quality and quantity that exert cardioprotective actions, partly through inhibiting platelet-activating factor (PAF), a potent inflammatory and thrombotic lipid mediator. However, wine cannot be consumed extensively due to the presence of ethanol.
View Article and Find Full Text PDFBr J Hosp Med (Lond)
January 2025
Nuffield Department of Primary Health Care Sciences, University of Oxford, Oxford, UK.
The contribution of health care to environmental and climate crises is significant, under-addressed, and with consequences for human health. This editorial is a call to action. Focusing on pharmaceuticals as a major environmental threat, we examine pharmaceutical impacts across their lifecycle, summarising greenhouse gas emissions, pollution, and biodiversity loss, and outlining challenges and opportunities to reduce this impact.
View Article and Find Full Text PDFBr J Hosp Med (Lond)
January 2025
Nursing Department, Zhang Ye People's Hospital Affiliated to Hexi University, Zhangye, Gansu, China.
Diabetes is a chronic lifelong condition that requires consistent self-care and daily lifestyle adjustments. Effective disease management involves regular blood glucose monitoring and ongoing nursing support. Inadequate education and poor self-management are key factors contributing to increased mortality among diabetic individuals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!