Technique for using an implant driver and tether system.

J Prosthet Dent

Clinical Assistant Professor, Department of Restorative Clinical Sciences, University of Missouri-Kansas City School of Dentistry, Kansas City, Mo. Electronic address:

Published: July 2020

An implant driver and tether system is described as a metal driver body and handle, a shaft for accepting a tether, and a distal end flange. The tether can be made of a soft material, such as silicone, and includes a retaining aperture, an elongated body, and a finger-securing aperture. During use, the tether is attached to the driver body by slipping the distal end flange of the driver body through the retaining aperture of the tether. The torque wrench is then attached to the handle of the driver.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.prosdent.2019.06.024DOI Listing

Publication Analysis

Top Keywords

driver body
12
implant driver
8
driver tether
8
tether system
8
distal flange
8
retaining aperture
8
aperture tether
8
driver
6
tether
6
technique implant
4

Similar Publications

Background: Prostate cancer (PC) is the commonest male visceral cancer, and second leading cause of cancer mortality in men in the Western world.

Methods: Using a forward-mutagenesis Sleeping Beauty (SB) transposon-based screen in a Probasin Cre-Recombinase (Pb-Cre) Pten-deficient mouse model of PC, we identified Arid1a loss as a driver in the development of metastatic disease.

Results: The insertion of transposon in the Arid1a gene resulted in a 60% reduction of Arid1a expression, and reduced tumour free survival (SB:Pten Arid1a median 226 days vs SB:Pten Arid1a 293 days, p = 0.

View Article and Find Full Text PDF

Coronaviruses (CoV) emerge suddenly from animal reservoirs to cause novel diseases in new hosts. Discovered in 2012, the Middle East respiratory syndrome coronavirus (MERS-CoV) is endemic in camels in the Middle East and is continually causing local outbreaks and epidemics. While all three newly emerging human CoVs from the past 20 years (SARS-CoV, SARS-CoV-2, and MERS-CoV) cause respiratory disease, each CoV has unique host interactions that drive differential pathogeneses.

View Article and Find Full Text PDF

The mushroom body (MB) is the center for associative learning in insects. In , intersectional split-GAL4 drivers and electron microscopy (EM) connectomes have laid the foundation for precise interrogation of the MB neural circuits. However, investigation of many cell types upstream and downstream of the MB has been hindered due to lack of specific driver lines.

View Article and Find Full Text PDF

This study evaluated the global burden of thyroid cancer (TC) from 1990 to 2021, analyzing its association with sociodemographic factors, sex, age, risk factors, and future projections. Using 2021 Global Burden of Disease data, we analyzed TC incidence, mortality, and disability-adjusted life years (DALYs) across populations. Risk factors were assessed, and future trends forecasted using the Bayesian age-period-cohort model.

View Article and Find Full Text PDF

Mutations in hnRNP A1 drive neurodegeneration and alternative RNA splicing of neuronal gene targets.

Neurobiol Dis

January 2025

Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; Neurology Division, Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada. Electronic address:

RNA binding protein dysfunction is a pathogenic feature of multiple neurological diseases, including multiple sclerosis (MS). Neurodegeneration (the loss of, or damage to neurons and axons) is the primary driver of disease progression in MS. Herein, we utilized a novel, neuron-specific model of neurodegeneration by transducing primary mouse neurons with mutant forms of the RNA binding protein heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) identified from MS patients, including one within the M9-nuclear localization sequence of hnRNP A1 (A1(P275S)) and a second in the prion-like domain of hnRNP A1 (A1(F263S)) to test the hypothesis that neuronal hnRNP A1 dysfunction drives neurodegeneration in MS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!