Background: Older people are likely to develop anorexia of aging. Rostral C1 (rC1) catecholaminergic neurons in rostral ventrolateral medulla (RVLM) are recently discovered its role in food intake control. It is well established that these neurons regulate cardiovascular function.
Objective: This study aims to determine the effect of age on the function of rostral C1 (rC1) neurons in mediating feeding response.
Method: Male Sprague Dawley rats at 3-months (n = 22) and 24-months (n = 22) old were used and further divided into two subgroups; 1) treatment group with 2-deoxy-d-glucose (2DG) and 2) vehicle group. Feeding hormones such as cholecystokinin (CCK), ghrelin and leptin were analysed using enzyme-linked immunosorbent assay (ELISA). Rat brain was carefully dissected to obtain the brainstem RVLM region. Further analysis was carried out to determine the level of proteins and genes in RVLM that were associated with feeding pathway. Protein expression of tyrosine hydroxylase (TH), phosphorylated TH at Serine40 (pSer40TH), AMP-activated protein kinase (AMPK), phosphorylated AMPK (phospho AMPK) and neuropeptide Y Y5 receptor (NPY5R) were determined by western blot. Expression of TH, AMPK and NPY genes were determined by real-time PCR.
Results: This study showed that blood glucose level was elevated in young and old rats following 2DG administration. Plasma CCK-8 concentration was higher in the aged rats at basal and increased with 2DG administration in young rats, but the leptin and ghrelin showed no changes. Old rats showed higher TH and lower AMPK mRNA levels. Glucoprivation decreased AMPK mRNA level in young rats and decreased TH mRNA in old rats. Aged rC1 neurons showed higher NPY5R protein level. Following glucoprivation, rC1 neurons produced distinct molecular changes across age in which, in young rats, AMPK phosphorylation level was increased and in old rats, TH phosphorylation level was increased.
Conclusion: These findings suggest that glucose-counterregulatory responses by rC1 neurons at least, contribute to the ability of young and old rats in coping glucoprivation. Age-induced molecular changes within rC1 neurons may attenuate the glucoprivic responses. This situation may explain the impairment of feeding response in the elderly.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.exger.2019.110779 | DOI Listing |
Int J Mol Sci
August 2023
Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by restrictive interests and/or repetitive behaviors and deficits in social interaction and communication. ASD is a multifactorial disease with a complex polygenic genetic architecture. Its genetic contributing factors are not yet fully understood, especially large structural variations (SVs).
View Article and Find Full Text PDFBrain Stimul
June 2023
Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA.
Objective: Despite advances in the treatment of psychiatric diseases, currently available therapies do not provide sufficient and durable relief for as many as 30-40% of patients. Neuromodulation, including deep brain stimulation (DBS), has emerged as a potential therapy for persistent disabling disease, however it has not yet gained widespread adoption. In 2016, the American Society for Stereotactic and Functional Neurosurgery (ASSFN) convened a meeting with leaders in the field to discuss a roadmap for the path forward.
View Article and Find Full Text PDFBiophys Chem
November 2022
Department of Physics, Trinity University, United States of America; Department of Neuroscience, Trinity University, United States of America. Electronic address:
Lipid binding kinetics and energetics of self-aggregated and disordered beta-amyloid oligomers of various sizes, from solution to lipid raft surfaces, were investigated using MD simulations. Our systems include small (monomers to tetramers) and larger (octamers and dodecamers) oligomers. Our lipid rafts contain saturated and unsaturated phosphatidylcholine (PC), cholesterol, and with or without asymmetrically distributed monosialotetrahexosylganglioside (GM1).
View Article and Find Full Text PDFNeuroimage
July 2022
Wu Tsai Neurosciences Institute, Stanford University, 290 Jane Stanford Way, Stanford, CA, USA; Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA, USA.
Cortical processing of binocular disparity is believed to begin in V1 where cells are sensitive to absolute disparity, followed by the extraction of relative disparity in higher visual areas. While much is known about the cortical distribution and spatial tuning of disparity-selective neurons, the relationship between their spatial and temporal properties is less well understood. Here, we use steady-state Visual Evoked Potentials and dynamic random dot stereograms to characterize the temporal dynamics of spatial mechanisms in human visual cortex that are primarily sensitive to either absolute or relative disparity.
View Article and Find Full Text PDFNeuroimage Clin
January 2022
Center for Autism Research, Children's Hospital of Philadelphia, 2716 South St, Philadelphia, PA 19104, United States; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd Philadelphia, PA 19105, United States; Department of Pediatrics Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd Philadelphia, PA 19105, United States.
Background: Despite decades of research, there is continued uncertainty regarding whether autism is associated with a specific profile of gray matter (GM) structure. This inconsistency may stem from the widespread use of voxel-based morphometry (VBM) methods that combine indices of GM density and GM volume. If GM density or volume, but not both, prove different in autism, the traditional VBM approach of combining the two indices may obscure the difference.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!