Maternal separation disturbs postnatal development of the medial prefrontal cortex and affects the number of neurons and glial cells in adolescent rats.

Neuroscience

Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, 31-343 Kraków, Smętna Street 12, Poland. Electronic address:

Published: December 2019

Adolescence is a period of extensive brain maturation. In particular, the regions of the medial prefrontal cortex (mPFC) undergo intense structural and functional refinement during adolescence. Disturbances in mPFC maturation have been implicated in the emergence of multiple psychopathologies during adolescence. One of the essential risk factors for the development of mental illness in adolescence is early-life stress (ELS), which may interfere with brain maturation. However, knowledge of the mechanisms by which ELS affects mPFC maturation and functioning in adolescents is very limited. In the present study, we applied a maternal separation (MS) procedure in rats to model ELS and studied its effect on the number of neurons and glial cells in the prelimbic region of the mPFC (PLC) of adolescent rats. Moreover, the expression of markers of cell proliferation and apoptosis was also studied. We found that MS rats had more neurons, astrocytes, and NG2-glial cells in the PLC. In contrast, the number of microglial cells was reduced in MS rats. These changes were accompanied by the decreased expression of proapoptotic genes and the increased expression of some prosurvival genes. Concurrently, MS did not affect cell proliferation in adolescents. Moreover, MS induced anxiety-like behaviors, but not anhedonic-like behavior, in adolescents. These results suggest that ELS may disturb neurodevelopmental apoptosis of neurons and early-postnatal proliferation and/or apoptosis of different populations of glial cells in the PLC. ELS-induced aberrations in the postnatal maturation of the PLC may affect cortical network organization and functioning and determine vulnerability to psychopathologies in adolescents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2019.10.033DOI Listing

Publication Analysis

Top Keywords

glial cells
12
maternal separation
8
medial prefrontal
8
prefrontal cortex
8
number neurons
8
neurons glial
8
adolescent rats
8
brain maturation
8
mpfc maturation
8
cell proliferation
8

Similar Publications

Assessment of Photoreceptor Recovery and Visual Function Utilizing Adaptive Optics and Microperimetry in Patients with Surgically Closed Macular Holes.

Photodiagnosis Photodyn Ther

December 2024

Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin, China, Tianjin Key Laboratory of Ocular Trauma, Tianjin, China, Tianjin Institute of Eye Health and Eye Diseases, Tianjin, China, China-UK "Belt and Road" Ophthalmology. Electronic address:

Background: This study investigated the association between photoreceptor structural restoration and visual function outcomes in patients undergoing surgery for closed macular holes (MHs). Using adaptive optics scanning laser ophthalmoscopy (AOSLO) and microperimetry, we aimed to provide a more detailed understanding of photoreceptor recovery and visual improvement in closed MHs.

Methods: We conducted a retrospective observational study of 31 eyes of 28 patients who underwent vitrectomy with internal limiting membrane (ILM) peeling to treat idiopathic MHs.

View Article and Find Full Text PDF

Virus encephalitis (VE), recognized as one of the common kinds of central nervous system (CNS) diseases after virus infection, has a surprising correlation with autoimmune encephalitis (AE) when autoimmune antibodies emerge in cerebrospinal fluid (CSF) or serum. Herpes simplex virus and Epstein-Barr virus are the most critical agents worldwide. By molecular mimicry, herpes viruses can invade the brain directly or indirectly.

View Article and Find Full Text PDF

Survival prediction of glioblastoma patients using machine learning and deep learning: a systematic review.

BMC Cancer

December 2024

Department of Data Science, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran.

Glioblastoma Multiforme (GBM), classified as a grade IV glioma by the World Health Organization (WHO), is a prevalent and notably aggressive form of brain tumor derived from glial cells. It stands as one of the most severe forms of primary brain cancer in humans. The median survival time of GBM patients is only 12-15 months, making it the most lethal type of brain tumor.

View Article and Find Full Text PDF

Colony-stimulating factor-1-receptor (CSF1R) inhibitors have been widely used to rapidly deplete microglia from the brain, allowing the remaining microglia population to self-renew and repopulate. These new-born microglia are thought to be "rejuvenated" and have been shown to be beneficial in several disease contexts and in normal aging. Their role in Alzheimer's disease (AD) is thus of great interest as they represent a potential disease-modifying therapy.

View Article and Find Full Text PDF

We present novel fluorescent cholesteryl probes (CNDs) with a modular design based on the solvatochromic 1,8-phthalimide scaffold. We have explored how different modules-linkers and head groups-affect the ability of these probes to integrate into lipid membranes and how they distribute intracellularly in mouse astrocytes and fibroblasts targeting lysosomes and lipid droplets. Each compound was assessed for its solvatochromic behavior in organic solvents and model membranes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!