Stimulus Reward Value Interacts with Training-induced Plasticity in Inhibitory Control.

Neuroscience

Neurology Unit, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Fribourg 1700, Switzerland. Electronic address:

Published: November 2019

Training inhibitory control, the ability to suppress motor or cognitive processes, not only enhances inhibition processes, but also reduces the perceived value and behaviors toward the stimuli associated with the inhibition goals during the practice. While these findings suggest that inhibitory control training interacts with the aversive and reward systems, the underlying spatio-temporal brain mechanisms remain unclear. We used electrical neuroimaging analyses of event-related potentials to examine the plastic brain modulations induced by training healthy participants to inhibit their responses to rewarding (pleasant chocolate) versus aversive food pictures (unpleasant vegetables) with Go/NoGo tasks. Behaviorally, the training resulted in a larger improvement in the aversive than in the rewarding NoGo stimuli condition, suggesting that reward responses impede inhibitory control learning. The electrophysiological results also revealed an interaction between reward responses and inhibitory control plasticity: we observed different effects of practice on the rewarding vs. aversive NoGo stimuli at 200 ms post-stimulus onset, when the conflicts between automatic response tendency and task demands for response inhibition are processed. Electrical source analyses revealed that this effect was driven by an increase in right orbito-cingulate and a decrease in temporo-parietal activity to the rewarding NoGo stimuli and the reverse pattern to the aversive stimuli. Our collective results provide direct neurophysiological evidence for interactions between stimulus reward value and executive control training, and suggest that changes in the assessment of stimuli with repeated motoric inhibition likely follow from associative learning and behavior-stimulus conflicts reduction mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2019.10.010DOI Listing

Publication Analysis

Top Keywords

inhibitory control
20
control training
12
nogo stimuli
12
stimulus reward
8
rewarding nogo
8
reward responses
8
control
6
stimuli
6
inhibitory
5
training
5

Similar Publications

Rhizobium etli is a nitrogen-fixing bacterium that encodes two l-asparaginases. The structure of the inducible R. etli asparaginase ReAV has been recently determined to reveal a protein with no similarity to known enzymes with l-asparaginase activity, but showing a curious resemblance to glutaminases and β-lactamases.

View Article and Find Full Text PDF

The cerebellum, identified to be active during cognitive and social behavior, has multisynaptic connections through the cerebellar nuclei (CN) and thalamus to cortical regions, yet formation and modulation of these pathways are not fully understood. Perineuronal nets (PNNs) respond to changes in local cellular activity and emerge during development. PNNs are implicated in learning and neurodevelopmental disorders, but their role in the CN during development is unknown.

View Article and Find Full Text PDF

Pyramidal cells (PCs) in CA1 hippocampus can be classified by their radial position as deep or superficial and organize into subtype-specific circuits necessary for differential information processing. Specifically, superficial PCs receive fewer inhibitory synapses from parvalbumin (PV)-expressing interneurons than deep PCs, resulting in weaker feedforward inhibition of input from CA3 Schaffer collaterals. Using mice, we investigated mechanisms underlying CA1 PC differentiation and the development of this inhibitory circuit motif.

View Article and Find Full Text PDF

MIF/CD74 axis in hepatic stellate cells mediates HBV-related liver fibrosis.

Int Immunopharmacol

January 2025

Department of Transplantation Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin Province 130061, China. Electronic address:

Chronic hepatitis B virus (HBV) infection is a major risk factor for liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Despite advances in understanding HBV-related liver diseases, effective therapeutic strategies remain limited. Macrophage migration inhibitory factor (MIF) has been implicated in various inflammatory and fibrotic conditions, but its role in HBV-induced liver fibrosis has not been fully explored.

View Article and Find Full Text PDF

Impact of 2,4-di-tert-butylphenol on pancreatic lipase activity in emulsions: Multispectral, molecular docking, and in vitro digestion analysis.

Food Chem

December 2024

Key Laboratory of Product Packaging and Logistics, College of Packing and Engineering, Jinan University, Zhuhai 519070, China. Electronic address:

2,4-di-tert-butylphenol (2,4-DTBP) is an additive used in food packaging. The inhibitory effects of 2,4-DTBP on pancreatic lipase (PL) were investigated in this study. Kinetic analysis indicated that 2,4-DTBP competitively and reversibly inhibited PL activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!