Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the present study, a hybrid intelligent model called SVR_RSM, which was extracted using response surface method (RSM) combined by the support vector regression (SVR) approaches was applied for predicting monthly pan evaporation (E). This method is established based on two basic calibrating process using RSM and SVR. In the first process, an input data group with two different input variables are used to calibrate the RSM; hence, the calibrating data by RSM in the first process are applied as input database for calibrating the SVR in the second process. Results obtained using the proposed SVR_RSM was compared with those obtained using the RSM, SVR, and the well-known multilayer perceptron neural network (MLPNN) models. Climatic variables including maximum and minimum temperatures (T, T), wind speed (U), and relative humidity (H%), and the periodicity represented by the month number (α) were selected for predicting the monthly E measured with the standard class A evaporation pan. Data was collected at six climatic stations located at the northern East of Algeria. The performances of the proposed models were compared using the RMSE, MAE, modified index of agreement (d), coefficient of correlation (R), and modified Nash and Sutcliffe efficiency (NSE). Using various input combination, the results show that the hybrid SVR_RSM model performed better than all the proposed models. Overall, better accuracy was observed when the model contained the periodicity (α), and it was demonstrated that the best accuracy was obtained using only T and T, coupled with the periodicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-019-06596-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!