Anti-ischemic activity of fabomotizole hydrochloride was studied on the model of subendocardial ischemia in rats with endothelial dysfunction. Endothelial dysfunction was modeled by intragastric administration of methionine (3 g/kg, once a day for 7 days). Acute subendocardial ischemia was induced in narcotized rats by intraperitoneal injection of isoproterenol (20 μg/kg/min over 5 min). Fabomotizole hydrochloride (intraperitoneally, 15 mg/kg) significantly reduced isoproterenol-induced ST segment depression in animals with endothelial dysfunction and with intact vasculature.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10517-019-04586-xDOI Listing

Publication Analysis

Top Keywords

endothelial dysfunction
16
fabomotizole hydrochloride
12
anti-ischemic activity
8
activity fabomotizole
8
subendocardial ischemia
8
hydrochloride conditions
4
endothelial
4
conditions endothelial
4
dysfunction
4
dysfunction anti-ischemic
4

Similar Publications

Background: Epidemiological surveys indicate an increasing incidence of type 2 diabetes mellitus (T2DM) among children and adolescents worldwide. Due to rapid disease progression, severe long-term cardiorenal complications, a lack of effective treatment strategies, and substantial socioeconomic burdens, it has become an urgent public health issue that requires management and resolution. Adolescent T2DM differs from adult T2DM.

View Article and Find Full Text PDF

Idiopathic pulmonary arterial hypertension (iPAH) is a rare, rapidly progressive disease associated with high morbidity and mortality. It is characterized by endothelial dysfunction within the pulmonary vascular bed and gradually leads to an increase in the pulmonary vascular resistances. Its non-specific symptomatology delays the diagnosis and brings the most severe forms to right ventricular failure.

View Article and Find Full Text PDF

Lung endothelial cell senescence impairs barrier function and promotes neutrophil adhesion and migration.

Geroscience

January 2025

Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL, USA.

Cellular senescence contributes to inflammation and organ dysfunction during aging. While this process is generally characterized by irreversible cell cycle arrest, its morphological features and functional impacts vary in different cells from various organs. In this study, we examined the expression of multiple senescent markers in the lungs of young and aged humans and mice, as well as in mouse lung endothelial cells cultured with a senescence inducer, suberoylanilide hydroxamic acid (SAHA), or doxorubicin (DOXO).

View Article and Find Full Text PDF

Stay connected: The myoendothelial junction proteins in vascular function and dysfunction.

Vascul Pharmacol

January 2025

Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043 Orbassano, Italy. Electronic address:

The appropriate regulation of peripheral vascular tone is crucial for maintaining tissue perfusion. Myoendothelial junctions (MEJs), specialized connections between endothelial cells and vascular smooth muscle cells, are primarily located in peripheral resistance vessels. Therefore, these junctions, with their key membrane proteins, play a pivotal role in the physiological control of relaxation-contraction coupling in resistance arterioles, mainly mediated through endothelium-derived hyperpolarization (EDH).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!