The extracellular matrix (ECM) is a major regulator of homeostasis and disease, yet the 3D structure of the ECM remains poorly understood because of limitations in ECM visualization. We recently developed an ECM-specialized method termed in situ decellularization of tissues (ISDoT) to isolate native 3D ECM scaffolds from whole organs in which ECM structure and composition are preserved. Here, we present detailed surgical instructions to facilitate decellularization of 33 different mouse tissues and details of validated antibodies that enable the visualization of 35 mouse ECM proteins. Through mapping of these ECM proteins, the structure of the ECM can be determined and tissue structures visualized in detail. In this study, perfusion decellularization is presented for bones, skeletal muscle, tongue, salivary glands, stomach, duodenum, jejunum/ileum, large intestines, mesentery, liver, gallbladder, pancreas, trachea, bronchi, lungs, kidneys, urinary bladder, ovaries, uterine horn, cervix, adrenal gland, heart, arteries, veins, capillaries, lymph nodes, spleen, peripheral nerves, eye, outer ear, mammary glands, skin, and subcutaneous tissue. Decellularization, immunostaining, and imaging take 4-5 d.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41596-019-0225-8 | DOI Listing |
J Chromatogr Sci
January 2025
Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science, 267, Gajeong-ro, Yuseong-gu, Daejeon, 34113Republic of Korea.
We developed a reversed-phased high-performance liquid chromatographic method combining ultraviolet detection and integrated pulsed amperometric detection for the simultaneous quantification of dopamine, 5-hydroxyindolacetic acid, homovanillic acid, serotonin, 3,4-dihydroxyphenylacetic acid, norepinephrine and epinephrine. All target components were completely separated in a C18 column with isocratic elution of 5% acetonitrile solution containing 8 mM HClO4 and 0.20 mM 1-octanesulfonic acid as an ion pairing reagent.
View Article and Find Full Text PDFSci Transl Med
January 2025
Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91052 Erlangen, Germany.
Dysregulation at the intestinal epithelial barrier is a driver of inflammatory bowel disease (IBD). However, the molecular mechanisms of barrier failure are not well understood. Here, we demonstrate dysregulated mitochondrial fusion in intestinal epithelial cells (IECs) of patients with IBD and show that impaired fusion is sufficient to drive chronic intestinal inflammation.
View Article and Find Full Text PDFPLoS One
January 2025
Mandel Center for Heart and Vascular Research, The Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC, United States of America.
Early events in the reprogramming of fibroblasts to cardiac muscle cells are unclear. While various histone undergo modification and re-positioning, and these correlate with the activity of certain genes, it is unknown if these events are causal or happen in response to reprogramming. Histone modification and re-positioning would be expected to open up chromatin on lineage-specific genes and this can be ascertained by studying nucleosome architecture.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong 999077, China.
Alternative proteins (AltProts) are a class of proteins encoded by DNA sequences previously classified as noncoding. Despite their historically being overlooked, recent studies have highlighted their widespread presence and distinctive biological roles. So far, direct detection of AltProt has been relying on data-dependent acquisition (DDA) mass spectrometry (MS).
View Article and Find Full Text PDFPLoS One
January 2025
Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.
The emerging field of 3D organ modeling encounters several imaging issues in particular related to antigen retrieval and sample loss during staining processes. Due to their compact shape, several antibodies fail to penetrate intact organoids or spheroids. Histology of organoids can be approached by paraffin inclusion and sectioning at 5 μm as performed for biopsies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!