A comprehensive technology is proposed to realize fast and safe rock cross-cut coal uncovering (RCCCU) based on artificial freezing engineering method. This comprehensive technology includes four steps, namely, drilling a borehole, wetting the coal body by water injection, gas drainage and freezing the coal seam by liquid nitrogen injection. In this paper, the compressive strength, tensile strength and shear strength of frozen coal specimens are tested to obtain the mechanical parameters of the specimen. Then, for RCCCU under freezing temperatures, the outburst prevention effects are calculated and quantitatively analysed with regard to three aspects, namely, the enhancement of coal the mechanical properties, the reduction in the coefficient of outburst hazard (COH) in the distressed zone and the reduction in the interfacial elastic energy ratio (IEER) between the coal seam and the roof/floor. The results show that a considerable improvement in the mechanical properties of frozen coal and that the coal mechanical parameters, such as the compressive strength and the tensile strength, increase linearly with decreasing temperature. The coefficient of outburst hazard in the distressed zone decreases rapidly and drops from above 0.8 to below 0.3. The interfacial elastic energy ratio is greatly reduced from dozens of times of that of the roof/floor before freezing to several times of that of the roof/floor after freezing, which effectively weakens the sudden change of the elastic energy at the coal-rock interface.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6841674PMC
http://dx.doi.org/10.1038/s41598-019-52879-yDOI Listing

Publication Analysis

Top Keywords

mechanical properties
12
frozen coal
12
coal seam
12
elastic energy
12
coal
10
rock cross-cut
8
cross-cut coal
8
coal uncovering
8
properties frozen
8
comprehensive technology
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!