Traffic in an urban network becomes congested once there is a critical number of vehicles in the network. To improve traffic operations, develop new congestion mitigation strategies, and reduce negative traffic externalities, understanding the basic laws governing the network's critical number of vehicles and the network's traffic capacity is necessary. However, until now, a holistic understanding of this critical point and an empirical quantification of its driving factors has been missing. Here we show with billions of vehicle observations from more than 40 cities, how road and bus network topology explains around 90% of the empirically observed critical point variation, making it therefore predictable. Importantly, we find a sublinear relationship between network size and critical accumulation emphasizing decreasing marginal returns of infrastructure investment. As transportation networks are the lifeline of our cities, our findings have profound implications on how to build and operate our cities more efficiently.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6841661PMC
http://dx.doi.org/10.1038/s41598-019-51539-5DOI Listing

Publication Analysis

Top Keywords

traffic capacity
8
critical number
8
number vehicles
8
critical point
8
critical
5
understanding traffic
4
capacity urban
4
urban networks
4
traffic
4
networks traffic
4

Similar Publications

Autonomous driving has demonstrated impressive driving capabilities, with behavior decision-making playing a crucial role as a bridge between perception and control. Imitation Learning (IL) and Reinforcement Learning (RL) have introduced innovative approaches to behavior decision-making in autonomous driving, but challenges remain. On one hand, RL's policy networks often lack sufficient reasoning ability to make optimal decisions in highly complex and stochastic environments.

View Article and Find Full Text PDF

Particulate matter and potentially toxic element content in urban ornamental plant species to assess pollutants trapping capacity.

J Environ Manage

January 2025

Department of Plant Biology and Ecology, University of Seville, Avda. Reina Mercedes S/n, Apartado de Correos, 1095, 41012, Sevilla, Spain. Electronic address:

Urban environments are usually polluted by anthropogenic activities like traffic, a major source of potentially toxic elements (PTEs), and ornamental plant species may reduce contamination by trapping traffic-related air pollutants in their leaves. The purpose of this study was tested the trapping pollutant capacity of four species commonly used in green areas of Seville city (SW Spain) to better choose species in urban green planning. Composition of particulate matter (PM) obtained from foliar surfaces (sPM) and wax-included (wPM) was determined by EDX-SEM analysis in samples from different city locations.

View Article and Find Full Text PDF

This study quantitatively assesses the resilience of the urban transport system in Changchun under extreme climatic conditions, focusing on the impacts of natural disasters such as snowstorms, strong winds and extreme low temperatures on the transport system. The vulnerability, exposure, and emergency recovery capacity of the transport system in Changchun were analyzed by constructing a comprehensive assessment framework combining multi-criteria decision analysis (MCDM) and geographic information system (GIS). Based on the meteorological and traffic data of Changchun City in the past 10 years, key indicators such as traffic network density, emergency resource distribution, traffic flow, and extreme weather frequency were selected in this study.

View Article and Find Full Text PDF

In an environmentally controlled plant factory with LED red-blue light, the effects of conventional light (4R:1B, 200 μmol·m·s, 18/6 h) and continuous light (CL, 24/0 h) with three light intensities (4R:1B, 200, 300 and 400 μmol·m·s, 24/0 h) on yield, nutritional quality, reactive oxygen species (ROS) content and 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity (DPPH) in green-leaf Yidali and purple-leaf Zishan lettuces were investigated. The results showed that the dry and fresh shoot weight of two lettuces exposed to CL tended to increase with light intensity-from 200 to 400 μmol·m·s-compared to conventional light, while the leaf area tended to decrease or remained unchanged. High-intensity CL could significantly increase soluble sugar and reduce the nitrate contents of the two lettuces.

View Article and Find Full Text PDF

Vehicular Ad-hoc Networks (VANETs) are growing into more desirable targets for malicious individuals due to the quick rise in the number of automated vehicles around the roadside. Secure data transfer is necessary for VANETs to preserve the integrity of the entire network. Federated learning (FL) is often suggested as a safe technique for exchanging data among VANETs, however, its capacity to protect private information is constrained.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!