Fish exposed to fluctuating oxygen concentrations often alter their metabolism and/or behaviour to survive. Hypoxia tolerance is typically associated with the ability to reduce energy demand by supressing metabolic processes such as protein synthesis. Arctic char is amongst the most sensitive salmonid to hypoxia, and typically engage in avoidance behaviour when faced with lack of oxygen. We hypothesized that a sensitive species will still have the ability (albeit reduced) to regulate molecular mechanisms during hypoxia. We investigated the tissue-specific response of protein metabolism during hypoxia. Little is known about protein degradation pathways during hypoxia in fish and we predict that protein degradation pathways are differentially regulated and play a role in the hypoxia response. We also studied the regulation of oxygen-responsive cellular signalling pathways [hypoxia inducible factor (HIF), unfolded protein response (UPR) and mTOR pathways] since most of what we know comes from studies on cancerous mammalian cell lines. Arctic char were exposed to cumulative graded hypoxia trials for 3 h at four air saturation levels (100%, 50%, 30% and 15%). The rate of protein synthesis was measured using a flooding dose technique, whereas protein degradation and signalling pathways were assessed by measuring transcripts and phosphorylation of target proteins. Protein synthesis decreased in all tissues measured (liver, muscle, gill, digestive system) except for the heart. Salmonid hearts have preferential access to oxygen through a well-developed coronary artery, therefore the heart is likely to be the last tissue to become hypoxic. Autophagy markers were upregulated in the liver, whereas protein degradation markers were downregulated in the heart during hypoxia. Further work is needed to determine the effects of a decrease in protein degradation on a hypoxic salmonid heart. Our study showed that protein metabolism in Arctic char is altered in a tissue-specific fashion during graded hypoxia, which is in accordance with the responses of the three major hypoxia-sensitive pathways (HIF, UPR and mTOR). The activation pattern of these pathways and the cellular processes that are under their control varies greatly among tissues, sometimes even going in the opposite direction. This study provides new insights on the effects of hypoxia on protein metabolism. Adjustment of these cellular processes is likely to contribute to shifting the fish phenotype into a more hypoxia-tolerant one, if more than one hypoxia event were to occur. Our results warrant studying these adjustments in fish exposed to long-term and diel cycling hypoxia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.203901 | DOI Listing |
Int J Antimicrob Agents
January 2025
School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China. Electronic address:
The prevalence of herpes simplex virus type 1 (HSV-1) infection and the emergence of drug-resistant HSV-1 strains posts a significant global health challenge, necessitating the urgent development of effective anti-HSV-1 drugs. As one of the most prevalent molecular chaperones, heat shock protein 90 α (Hsp90α) has been extensively demonstrated to regulate a range of viral infections, thus representing a promising antiviral target. In this study, we identified JD-13 as a novel Hsp90α inhibitor and explored its capability in inhibiting HSV-1 infection.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA. Electronic address:
Carboxyl-terminus of Hsp70-Interacting Protein (CHIP) is an E3 ubiquitin ligase that marks misfolded substrates for degradation. Hyper-activation of CHIP has been implicated in multiple diseases, including cystic fibrosis and cancer, suggesting that it may be a potential drug target. However, there are few tools available for exploring this possibility.
View Article and Find Full Text PDFCancer Lett
January 2025
Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China; Institute of Clinical Pharmacology, Central South University, Changsha 410078, P. R. China. Electronic address:
Lung cancer, particularly non-small cell lung cancer (NSCLC), remains a leading cause of cancer-related mortality. Resistance to platinum-based chemotherapy, such as cisplatin, significantly limits treatment efficacy. Circular RNAs (circRNAs) have emerged as key regulators of cancer progression and chemotherapy resistance due to their stable structure, which protects them from degradation.
View Article and Find Full Text PDFVirology
January 2025
College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China. Electronic address:
Porcine circovirus type 3 (PCV3) is an emerging pathogen that causes porcine dermatitis, and reproductive failure. PCV3 Cap interacts with DExD/H-box helicase 36 (DHX36), a protein that functions primarily through regulating interferon (IFN)-β production. However, how the interaction between DHX36 and PCV3 Cap regulates viral replication remains unknown.
View Article and Find Full Text PDFBioorg Chem
January 2025
Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018 China. Electronic address:
The chronic myeloid leukemia is a malignant hematopoietic disorder in which the BCR-ABL kinase has been identified as the causative protein. The inhibitors targeting BCR-ABL kinase have been extensively employed in clinical management of chronic myeloid leukemia, significantly enhancing survival rates and prognosis for patients. Despite the extensive utilization of 1st to 4th generation BCR-ABL inhibitors in clinical therapy, the emergence of drug-resistant mutations necessitates an urgent quest for novel therapeutic strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!