Dual-modal imaging guided photodynamic therapy (PDT) of multifunctional nanocomposites holds great promise for precision tumor theranostics. However, poor heterogeneous interfacial compatibility between functional components, low hydrophilicity and complicated preparation of nanocomposites remain major obstacles for further bioapplication. Herein, a facile central metal-derived co-assembly strategy is developed to effectively integrate gadolinium porphyrin (GdTPP) contrast agent and Zinc porphyrin (ZnTPP) photosensitizer into a homogeneous GdTPP/ZnTPP nanocomposites (GZNs). GZNs possesses the following advantages: (1) Greatly improved interfacial compatibility facilitated by incorporating two metalporphyrins with same group (phenyl-) and different central metal atoms (Zn and Gd) leading to higher yield (4.7-5 fold) than either monocomponent nanoparticles. (2) Poor dispersity of GdTPP nanoparticles is greatly improved after integrating with ZnTPP blocks. (3) The GZNs inherit excellent fluorescence imaging, high relaxation rate (8.18 mM s) and singlet oxygen production from two raw metalporphyrins. After camouflaging with homotypic cancer cell membrane for immunologic escape, the HeLa membrane coated GZNs (mGZNs) show enhanced in vivo MR/FL imaging guided anti-tumor targeting efficiency of 80.6% for HeLa cells. Our new strategy using central metal-derived co-assembly of homogeneous building blocks greatly improves interfacial compatibility to achieve combined functions for visualized cancer theranostics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2019.119576 | DOI Listing |
Environ Sci Pollut Res Int
June 2023
Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Department of Preventive Medicine, Shantou University Medical College, Xinling Rd., No. 22, Shantou, 515041, Guangdong, China.
Vision is the most essential sense system for the human being. Congenital visual impairment affects millions of people globally. It is increasingly realized that visual system development is an impressionable target of environmental chemicals.
View Article and Find Full Text PDFSoft Matter
April 2023
East China University of Science and Technology, Department of Chemical Engineering, Meilong Road 130, 200237 Shanghai, China.
Achieving organized assembly structures with high complexity and adjustable functionalities is a central quest in supramolecular chemistry. In this report, we study what happens when a discotic benzene-1,3,5-tricarboxamide (BTA) ligand containing three dipicolinic acid (DPA) groups is allowed to coordinate with lanthanide (Ln) ions. A multi-BTA coordination cluster forms, which behaves as a type of "supramolecular monomer", stacking into fibers hydrogen bonds enabled by multiple BTA cores.
View Article and Find Full Text PDFBiomaterials
March 2020
International Joint Center for Biomedical Innovation, School of Life Sciences Henan University, Kaifeng, 475004, China; Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia. Electronic address:
Biomaterials
January 2020
International Joint Center for Biomedical Innovation, School of Life Sciences Henan University, Kaifeng, 475004, China; Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia. Electronic address:
Dual-modal imaging guided photodynamic therapy (PDT) of multifunctional nanocomposites holds great promise for precision tumor theranostics. However, poor heterogeneous interfacial compatibility between functional components, low hydrophilicity and complicated preparation of nanocomposites remain major obstacles for further bioapplication. Herein, a facile central metal-derived co-assembly strategy is developed to effectively integrate gadolinium porphyrin (GdTPP) contrast agent and Zinc porphyrin (ZnTPP) photosensitizer into a homogeneous GdTPP/ZnTPP nanocomposites (GZNs).
View Article and Find Full Text PDFHomeopathy
May 2018
Centre for Interdisciplinary Research and Education, Kolkata, West Bengal, India.
Background: We report the effects of nanoparticles in homeopathic preparations of copper salts on the electrical properties of polymer film. Previous work showed that the incorporation of metal-derived homeopathic medicines increases the dielectric constant and alternating current (AC) conductivity of an electroactive polymer film that is commonly used as a capacitor in the electronic industry.We report here the effect of dilution of one homeopathic medicine, (), at 200C potency on the electrical properties of the polymer film of poly(vinylidene fluoride-co-hexafluoropropylene).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!