We report a novel chiral interface based on polysaccharides that was integrated via an amidation reaction between the COOH of sodium alginate and the NH of chitosan to form a chiral selector (SA-CS) with three dimensional N-doped graphene-CNT (NGC) as the substrate material. This interface was used for chiral discrimination of tryptophan (Trp) enantiomers via electrochemical measurements. The FT-IR, SEM, TEM and XPS characterization showed that the chiral selector and substrate materials were prepared successfully. Compared with individual SA-CS and NGC, the integrated polysaccharides/3D NGC showed higher enantioselectivity for L-Trp than D-Trp due to the smaller steric hindrance for D-Trp during the formation of three-point interactions between the two diastereoisomeric enantiomer-selector complexes, which allowed L-Trp to more easily detach from the electrode modification layer and approach the electrode surface, facilitating its approach and confirming that SA-CS had a higher constant for L-Trp when applied to real samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioelechem.2019.107396 | DOI Listing |
Bioelectrochemistry
February 2020
Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
We report a novel chiral interface based on polysaccharides that was integrated via an amidation reaction between the COOH of sodium alginate and the NH of chitosan to form a chiral selector (SA-CS) with three dimensional N-doped graphene-CNT (NGC) as the substrate material. This interface was used for chiral discrimination of tryptophan (Trp) enantiomers via electrochemical measurements. The FT-IR, SEM, TEM and XPS characterization showed that the chiral selector and substrate materials were prepared successfully.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!