Piezo Ion Channels in Cardiovascular Mechanobiology.

Trends Pharmacol Sci

Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, Valbonne, France. Electronic address:

Published: December 2019

Mechanotransduction has a key role in vascular development, physiology, and disease states. Piezo1 is a mechanosensitive (MS) nonselective cationic channel that occurs in endothelial and vascular smooth muscle cells. It is activated by shear stress associated with increases in local blood flow, as well as by cell membrane stretch upon elevation of blood pressure. Here, we briefly review the pharmacological modulators of Piezo and discuss current understanding of the role of Piezo1 in vascular mechanobiology and associated clinical disorders, such as atherosclerosis and hypertension. Ultimately, we believe that this research will help identify novel therapeutic strategies for the treatment of vascular diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tips.2019.10.002DOI Listing

Publication Analysis

Top Keywords

piezo ion
4
ion channels
4
channels cardiovascular
4
cardiovascular mechanobiology
4
mechanobiology mechanotransduction
4
mechanotransduction key
4
key role
4
vascular
4
role vascular
4
vascular development
4

Similar Publications

Substrate stiffness modulates osteogenic and adipogenic differentiation of osteosarcoma through PIEZO1 mediated signaling pathway.

Cell Signal

January 2025

The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China. Electronic address:

Most osteosarcoma (OS) cases exhibit poor differentiation at the histopathological level. Disruption of the normal osteogenic differentiation process results in the unregulated proliferation of precursor cells, which is a critical factor in the development of OS. Differentiation therapy aims to slow disease progression by restoring the osteogenic differentiation process of OS cells and is considered a new approach to treating OS.

View Article and Find Full Text PDF

Inflammation alters the expression and activity of the mechanosensitive ion channels in periodontal ligament cells.

Eur J Orthod

December 2024

Division of Paediatric Dentistry & Orthodontics, Faculty of Dentistry, the University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, China.

Background: Periodontal ligament cells (PDLCs) possess mechanotransduction capability, vital in orthodontic tooth movement (OTM) and maintaining periodontal homeostasis. The study aims to elucidate the expression profiles of mechanosensitive ion channel (MIC) families in PDLCs and how the inflammatory mediator alters their expression and function, advancing the understanding of the biological process of OTM.

Methods And Methods: Human PDLCs were cultured and exposed to TNF-α.

View Article and Find Full Text PDF

Osteoarthritis (OA) is characterized by articular cartilage degeneration, leading to pain and loss of joint function. Recent studies have demonstrated that omega-3 (ω3) polyunsaturated fatty acid (PUFA) supplementation can decrease injury-induced OA progression in mice fed a high-fat diet. Furthermore, PUFAs have been shown to influence the mechanical properties of chondrocyte membranes, suggesting that alterations in mechanosensitive ion channel signaling could contribute to the mechanism by which ω3 PUFAs decreased OA pathogenesis.

View Article and Find Full Text PDF

The Unique Roles of Ion Channels in Pluripotent Stem Cells in Response to Biological Stimuli.

Biology (Basel)

December 2024

School of Pharmacy at Fukuoka, International University of Health and Welfare, Enokizu 137-1, Okawa 831-8501, Fukuoka, Japan.

Ion channels are essential for mineral ion homeostasis in mammalian cells, and these are activated or inhibited by environmental stimuli such as heat, cold, mechanical, acidic, or basic stresses. These expressions and functions are quite diverse between cell types. The function and importance of ion channels are well-studied in neurons and cardiac cells, while those functions in pluripotent stem cells (PSCs) were not fully understood.

View Article and Find Full Text PDF

Mechanical force orchestrates a myriad of cellular events including inhibition of axon regeneration, by locally activating the mechanosensitive ion channel Piezo enriched at the injured axon tip. However, the cellular mechanics underlying Piezo localization and function remains poorly characterized. We show that the RNA repair/splicing enzyme Rtca acts upstream of Piezo to modulate its expression and transport/targeting to the plasma membrane via Rab10 GTPase, whose expression also relies on Rtca.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!