Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Hypothesis: The structural details, viscosity trends and dynamic phenomena in t-butanol/water solutions are closely related on the molecular scales across the entire composition range. Utilizing the experimental small- and wide-angle x-ray scattering (SWAXS) method, molecular dynamics (MD) simulations and the 'complemented-system approach' method developed in our group it is possible to comprehensively describe the structure-viscosity-dynamics relationship in such structurally versatile hydrogen-bonded molecular liquids, as well as in similar, self-assembling systems with pronounced molecular and supramolecular structures at the intra-, inter-, and supra-molecular scales.
Experiments: The SWAXS and x-ray diffraction experiments and MD simulations were performed for aqueous t-butanol solutions at 25 °C. Literature viscosity and self-diffusion data were also used.
Findings: The interpretive power of the proposed scheme was demonstrated by the extensive and diverse results obtained for aqueous t-butanol solutions across the whole concentration range. Four composition ranges with qualitatively different structures and viscosity trends were revealed. The experimental and calculated zero-shear viscosities and molecular self-diffusion coefficients were successfully related to the corresponding structural details. The hydrogen bonds that were, along with hydrophobic effects, recognized as the most important driving force for the formation of t-butanol aggregates, show intriguing lifetime trends and thermodynamic properties of their formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2019.10.094 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!