We investigate which of the higher cognitive abilities or types of intelligence characteristic of humans are found, even in preliminary form, in non-human animals, predominantly primates, or whether qualitatively different ("unique") human abilities exist. This concerns (1) tool use and fabrication, (2) problem solving, (3) gaze following, (4) mirror self-recognition, (5) imitation, (6) metacognition, (7) theory of mind, (8) consciousness, (9) prosociality, and (10) language. We found that none of these abilities can be regarded as unique to humans without precursors in non-human primates. The observed differences in cognitive functions, underlying brain mechanisms and resulting behaviors correlate best with differences in the information processing capacity as an equivalent of general intelligence based on the number of cortical neurons, packing density and axonal conduction velocity plus long-range cortical fascicles. The biggest quantitative change appears to concern the origin of syntactical language, but this was preceded by an increased mental ability to manipulate sequential events within working memory.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.pbr.2019.02.004 | DOI Listing |
Mol Biol Evol
January 2025
State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China.
Nucleotide-binding leucine-rich repeat receptor (NLR) genes encode a pivotal class of plant immune receptors. However, their rampant duplication and loss have made inferring their genomic evolutionary trajectory difficult, exemplified by the loss of TNL family genes in monocots. In this study, we introduce a novel classification system for angiosperm NLR genes, grounded in network analysis of micro-synteny information.
View Article and Find Full Text PDFACS Nano
January 2025
School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore.
Hydrogen evolution reaction and Zn dendrite growth, originating from high water activity and the adverse competition between the electrochemical kinetics and mass transfer, are the main constraints for the commercial applications of the aqueous zinc-based batteries. Herein, a weak H-bond interface with a suspension electrolyte is developed by adding TiO nanoparticles into the electrolytes. Owing to the strong polarity of Ti-O bonds in TiO, abundant hydroxyl functional groups are formed between the TiO active surface and aqueous environment, which can produce a weak H-bond interface by disrupting the initial H-bond networks between the water molecules, thereby accelerating the mass transfer of Zn and reducing the water activity.
View Article and Find Full Text PDFPhysiol Plant
January 2025
College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China.
Nitrogen (N) is a crucial macronutrient for plant growth, with nitrate as a primary inorganic N source for most plants. Beyond its role as a nutrient, nitrate also functions as a signalling molecule, influencing plant morphogenetic development. While nitrate utilization and signalling mechanisms have been extensively studied in model plants, the origin, evolution, and diversification of core components in nitrate uptake, assimilation, and signalling remain largely unexplored.
View Article and Find Full Text PDFFront Cell Neurosci
January 2025
The Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan.
The evolution of brain-expressed genes is notably slower than that of genes expressed in other tissues, a phenomenon likely due to high-level functional constraints. One such constraint might be the integration of information by neuron assemblies, enhancing environmental adaptability. This study explores the physiological mechanisms of information integration in neurons through three types of synchronization: chemical, electromagnetic, and quantum.
View Article and Find Full Text PDFPeerJ
January 2025
Zoology, Instituto de Biología, UNAM, Mexico City, Mexico.
The Species Group contains eleven species of terraranan frogs distributed from eastern Honduras to eastern Panama. All species have remarkable color pattern polymorphisms, which may contribute to potential taxonomic problems. We performed exhaustive sampling throughout the geographic distribution of the group to evaluate the phylogenetic relationships and biogeographic history of all named species based on two mitochondrial markers and nuclear ddRAD loci.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!