Background: Designing a potent recombinant vaccine, using the appropriate subunits with the greatest effect on stimulating the immune system, especially in the case of intracellular pathogens such as gram negative Brucella Melitensis bacteria, is of great importance. In this study, three repeats of 27 amino acids of the immunogenic epitope derived from OMP31 antigen (3E) from the Brucella melitensis, in a protective manner against Brucellosis have been used. To fortify the delivery system of recombinant antigens, IL-2 cytokine as a molecular adjuvant was fused to recombinant constructs. Recombinant proteins were evaluated for immunological studies in a mouse model (BALB/c).

Results: The results showed that all recombinant proteins could stimulate the immune system to produce Th1 cytokines and antibodies in compare to the negative control treatments. 3E-IL2 and then OMP31-IL2 proteins stimulated higher levels of IFN-γ and IL-2 compared to the other treatments (p < 0.05). Also, the results indicated that experimental treatments produced a higher level of IgG2a isotype than IgG1 isotype. In addition, the findings of the experiment showed that the presence of chemical adjuvant (IFA) along with molecular adjuvant can play a significant role in stimulating the immune system. After determining the potency of recombinant structures, their efficacy in stimulating the immune system were also evaluated. B. melitensis M16 strain was used to challenge 30 days after last immunization. The microbial load of the splenocyte in the treatments receiving chimeric proteins were significantly lower. Also, Wright serological test confirmed that these treatments had the lowest agglutination rate, as well as the positive treatment, while in the negative treatments in excess of blood serum dilutions, agglutination rate were more than 2 + .

Conclusions: 3E-IL2 treatment showed the best performance compared to other recombinant proteins and could be considered as the suitable candidate for further research on the production of recombinant vaccine against Brucella.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6842255PMC
http://dx.doi.org/10.1186/s12917-019-2074-7DOI Listing

Publication Analysis

Top Keywords

brucella melitensis
12
omp31 antigen
8
immune system
8
recombinant proteins
8
recombinant
5
vivo immunogenicity
4
immunogenicity assessment
4
assessment vaccine
4
vaccine efficacy
4
efficacy evaluation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!