Background: Klebsiella variicola and K. quasipneumoniae are new species distinguishable from K. pneumoniae but they are often misidentified as K. pneumoniae in clinical settings. Several reports have demonstrated the possibility that the virulence factors and clinical features differ among these three phylogroups. In this study, we aimed to clarify whether there were differences in clinical and bacterial features between the three phylogroups isolated from patients with bloodstream infections (BSIs) in Japan.
Methods: Isolates from all patients with BSIs caused by K. pneumoniae admitted to two hospitals between 2014 and 2017 (n = 119) were included in the study. Bacterial species were identified via sequence analysis, and their virulence factors and serotypes were analyzed via multiplex PCR results. Clinical data were retrieved from medical records.
Results: Of the 119 isolates, 21 (17.7%) were identified as K. variicola and 11 (9.2%) as K. quasipneumoniae; K1 serotype was found in 16 (13.4%), and K2 serotype in 13 (10.9%). Significant differences in the prevalence of rmpA, iutA, ybtS, entB and kfu (p < 0.001), and allS genes (p < 0.05) were found between the three phylogroups. However, there were no significant differences in clinical features, including the 30-day mortality rate, between the three organisms, although K. variicola was more frequently detected in patients over 80 years old compared with other Klebsiella species (p < 0.005), and K. quasipneumoniae more frequently occurred in patients with malignancy (p < 0.05).
Conclusions: Our findings demonstrated the differences in bacterial pathogenicity and clinical features among these three phylogroups. Further epidemiological studies into BSI caused by Klebsiella species are warranted.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6842162 | PMC |
http://dx.doi.org/10.1186/s12879-019-4498-x | DOI Listing |
World J Microbiol Biotechnol
January 2025
Department of Zoology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia.
Utilizing metal/nanoparticle (NP)- tolerant plant growth-promoting rhizobacteria (PGPR) is a sustainable and eco-friendly approach for remediation of NP-induced phytotoxicity. Here, Pisum sativum (L.) plants co-cultivated with different CuO-NP concentrations exhibited reduced growth, leaf pigments, yield attributes, and increased oxidative stress levels.
View Article and Find Full Text PDFInfect Ecol Epidemiol
December 2024
Macha Research Trust, Choma, Zambia.
Background: Infectious disease agents pose significant threats to humans, wildlife, and livestock, with rodents carrying a third of these agents, many linked to human diseases. However, the range of pathogens in rodents and the hotspots for disease remain poorly understood.
Aim: This study evaluated the prevalence of viral, bacterial, and parasitic pathogens in rodents in riverine and non-riverine areas in selected districts in Zambia.
Front Microbiol
December 2024
Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA, United States.
The Ironwood tree () holds a significant ecological role in Guam where a decline in Ironwood trees was first documented in 2002. Studies have linked the Ironwood tree decline (IWTD) to bacteria from the complex and wetwood bacteria, specifically and . Presence of termites was first found to be associated with IWTD in 2010; however, the role of termites in IWTD is still not clear.
View Article and Find Full Text PDFACS Synth Biol
December 2024
Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, Wisconsin 53706, United States.
The soil environment affected by plant roots and their exudates, termed the rhizosphere, significantly impacts crop health and is an attractive target for engineering desirable agricultural traits. Engineering microbes in the rhizosphere is one approach to improving crop yields that directly minimizes the number of genetic modifications made to plants. Soil microbes have the potential to assist with nutrient acquisition, heat tolerance, and drought response if they can persist in the rhizosphere in the correct numbers.
View Article and Find Full Text PDFMicrobiol Resour Announc
December 2024
Instituto Nacional de Salud Pública (INSP), Centro de Investigación sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Cuernavaca, Morelos, Mexico.
Recently, global dissemination of NDM-producing in hospital settings and natural environments has been described. This study described the whole-genome sequencing of multidrug-resistant phenotype and NDM-producing clinical isolates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!