Over this past decade, we combined the idea of stochastic resolution of identity with a variety of electronic structure methods. In our stochastic Kohn-Sham density functional theory (DFT) method, the density is an average over multiple stochastic samples, with stochastic errors that decrease as the inverse square root of the number of sampling orbitals. Here, we develop a stochastic embedding density functional theory method (se-DFT) that selectively reduces the stochastic error (specifically on the forces) for a selected subsystem(s). The motivation, similar to that of other quantum embedding methods, is that for many systems of practical interest, the properties are often determined by only a small subsystem. In stochastic embedding DFT, two sets of orbitals are used: a deterministic one associated with the embedded subspace and the rest, which is described by a stochastic set. The method agrees exactly with deterministic calculations in the limit of a large number of stochastic samples. We apply se-DFT to study a p-nitroaniline molecule in water, where the statistical errors in the forces on the system (the p-nitroaniline molecule) are reduced by an order of magnitude compared with nonembedding stochastic DFT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5110226 | DOI Listing |
Toxics
January 2025
Department of Civil Engineering, Transilvania University of Brașov, 5 Turnului Str., 500152 Brașov, Romania.
Pollution is one of the most important issues currently affecting the global population and environment. Therefore, determining the zones where stringent measures should be taken is necessary. In this study, Principal Component Analysis (PCA), Factor Analysis (FA), and t-distributed Stochastic Neighbor Embedding (t-SNE) were utilized for dimensionality reduction and clustering of data series containing the concentration of 10 heavy metals collected at 14 locations.
View Article and Find Full Text PDFJ Imaging
January 2025
Istituto di Scienze Applicate e Sistemi Intelligenti (ISASI), Consiglio Nazionale delle Ricerche (CNR), DHITECH, Campus Università del Salento, Via Monteroni s.n., 73100 Lecce, Italy.
Despite significant advancements in the automatic classification of skin lesions using artificial intelligence (AI) algorithms, skepticism among physicians persists. This reluctance is primarily due to the lack of transparency and explainability inherent in these models, which hinders their widespread acceptance in clinical settings. The primary objective of this study is to develop a highly accurate AI-based algorithm for skin lesion classification that also provides visual explanations to foster trust and confidence in these novel diagnostic tools.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
Surface-enhanced Raman spectroscopy (SERS) has become an indispensable tool for biomolecular analysis, yet the detection of DNA signals remains hindered by spectral interference from citrate ions, which overlap with key DNA features. This study introduces an innovative, ultrasensitive SERS platform utilizing thiol-modified silver nanoparticles (Ag@SDCNPs) that overcomes this challenge by eliminating citrate interference. This platform enables direct, interference-free detection and structural characterization of a wide range of DNA conformations, including single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), i-motif, hairpin, G-quadruplex, and triple-stranded DNA (tsDNA).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
Monkeypox virus (MPXV), a zoonotic pathogen, re-emerged in 2022 with the Clade IIb variant, raising global health concerns due to its unprecedented spread in non-endemic regions. Recent studies have shown that Clade IIb (2022 MPXV) is marked by unique genomic mutations and epidemiological behaviors, suggesting variations in host-virus interactions. This study aimed to identify the differentially expressed genes (DEGs) induced by the 2022 MPXV infection through comprehensive bioinformatics analyses of microarray and RNA-Seq datasets from post-infected cell types with different MPXV clades.
View Article and Find Full Text PDFAnalyst
January 2025
Faculty of Physics, M.V. Lomonosov Moscow State University, 1-2 Leninskie Gory, Moscow, 119991, Russia.
The issue of variability introduced into blood plasma and serum analysis by preanalytical procedures is the major obstacle to obtaining accurate and reproducible results. While the question of how to overcome this issue has been discussed in biochemical detection of analytes and omics technologies, its relevance to the field of optical spectroscopy remains mostly unexplored. In this work, we evaluated the freeze-thaw cycle (FTC)-induced alternations in blood serum optical properties by means of autofluorescence and Raman spectroscopy, including surface-enhanced Raman spectroscopy (SERS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!