Luminescence spectroscopy experiments were realized for single colloidal quantum dots CdSe/ZnS in a broad temperature range above room temperature in a nitrogen atmosphere. Broadening and shifts of spectra due to the temperature change as well as due to spectral diffusion processes were detected and analyzed. A linear correlation between the positions of maxima and the squared linewidths of the spectra was found. This dependence was explained by a model that takes into account the slow variation of the electron-phonon coupling strength.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5124913 | DOI Listing |
J Phys Condens Matter
January 2025
Escuela de Artes Plásticas y Audiovisuales, Benemerita Universidad Autonoma de Puebla, Av. San Claudio y Blvd. 18 Sur, Edificios 1IF1, 2IF1 y 3IF1, Ciudad Universitaria, Colonia San Manuel, Puebla, Puebla, 72570, MEXICO.
Transition metal nitrides are well-known 3D superconductor materials. However, there is a lack of knowledge related to their two-dimensional (2D) counterparts, which have several potential technological applications. In this work, we predict, using an evolutionary algorithm coupled with a first-principles approach, a set of novel 2D superconductive structures based on tungsten nitride.
View Article and Find Full Text PDFNano Lett
January 2025
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
Lanthanide (Ln)-titanium-based molecular nanoclusters (NCs) have attracted much attention due to their atomically precise total structure and promising optical behavior, while there is still minimal cognition of structure-dictated electron relaxation dynamics in such an NCs regime with unsatisfied photoluminescence quantum yield (PLQY, in general below 20%). Herein, the photoexcited small polarons (i.e.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Electrical and Computer Engineering and the Rice Advanced Materials Institute, Rice University, Houston, TX 77005, USA.
Polarons, quasiparticles from electron-phonon coupling, are crucial for material properties including high-temperature superconductivity and colossal magnetoresistance. However, scarce studies have investigated polaron formation in low-dimensional materials with phonon polarity and electronic structure transitions. In this work, we studied polarons of tellurene, composed of chiral Te chains.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Physics and Astronomy, University of Wyoming, Laramie, Wyoming 82071, United States.
Anisotropic materials with low symmetries hold significant promise for next-generation electronic and quantum devices. 2M-WS, which is a candidate for topological superconductivity, has garnered considerable interest. However, a comprehensive understanding of how its anisotropic features contribute to unconventional superconductivity, along with a simple, reliable method to identify its crystal orientation, remains elusive.
View Article and Find Full Text PDFSci Rep
January 2025
School of Physics, Engineering and Technology, University of York, York, YO10 5DD, UK.
Using first principles calculations, we show that [Formula: see text] materials have strong electron-phonon coupling, with many having a superconducting critical temperature ([Formula: see text]) that exceeds that of the more familiar [Formula: see text] at ambient pressure. In particular, we find that [Formula: see text] is the most stable member of the family, with [Formula: see text] whilst the peak [Formula: see text] is with [Formula: see text] which has [Formula: see text]. Our results reveal that these materials are both thermodynamically and dynamically stable, with strong electron-phonon coupling, indicating significant potential for practical superconducting applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!