Chain stiffness bridges conventional polymer and bio-molecular phases.

J Chem Phys

Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia Campus Scientifico, Edificio Alfa, via Torino 155, 30170 Venezia Mestre, Italy.

Published: November 2019

Chain molecules play important roles in industry and in living cells. Our focus here is on distinct ways of modeling the stiffness inherent in a chain molecule. We consider three types of stiffnesses-one yielding an energy penalty for local bends (energetic stiffness) and the other two forbidding certain classes of chain conformations (entropic stiffness). Using detailed Wang-Landau microcanonical Monte Carlo simulations, we study the interplay between the nature of the stiffness and the ground state conformation of a self-attracting chain. We find a wide range of ground state conformations, including a coil, a globule, a toroid, rods, helices, and zig-zag strands resembling β-sheets, as well as knotted conformations allowing us to bridge conventional polymer phases and biomolecular phases. An analytical mapping is derived between the persistence lengths stemming from energetic and entropic stiffness. Our study shows unambiguously that different stiffnesses play different physical roles and have very distinct effects on the nature of the ground state of the conformation of a chain, even if they lead to identical persistence lengths.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5123720DOI Listing

Publication Analysis

Top Keywords

ground state
12
conventional polymer
8
entropic stiffness
8
state conformation
8
persistence lengths
8
chain
6
stiffness
5
chain stiffness
4
stiffness bridges
4
bridges conventional
4

Similar Publications

Solvatochromism and cis-trans isomerism in azobenzene-4-sulfonyl chloride.

Photochem Photobiol Sci

January 2025

CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal.

Solvatochromism exhibited by azobenzene-4-sulfonyl chloride (here abbreviated as Azo-SCl) has been investigated in a series of non-polar, polar-aprotic and polar-protic solvents. The UV-vis spectra of Azo-SCl exhibit two long-wavelength bands, observed at 321-330 nm (band-I) and 435-461 nm (band-II), which are ascribed to the π*-π (S ← S) and π*-n (S ← S) transitions, respectively. The shorter wavelength band indicates a reversal in solvatochromism, from negative to positive solvatochromism, for a solvent with a dielectric constant of 32.

View Article and Find Full Text PDF

The ground states of two-species condensates with spin-1 atoms have been studied analytically and numerically. All the results from the analytical approach are checked by the latter. The [Formula: see text] channel has been neglected, where λ is the coupled spin of two different atoms.

View Article and Find Full Text PDF

Observation of magnetic skyrmion lattice in CrMnGe by small-angle neutron scattering.

Sci Rep

January 2025

Helmholtz-Zentrum Berlin für Materialien und Energie, 13109, Berlin, Germany.

Incommensurate magnetic phases in chiral cubic crystals are an established source of topological spin textures such as skyrmion and hedgehog lattices, with potential applications in spintronics and information storage. We report a comprehensive small-angle neutron scattering (SANS) study on the B20-type chiral magnet Cr[Formula: see text]Mn[Formula: see text]Ge, exploring its magnetic phase diagram and confirming the stabilization of a skyrmion lattice under low magnetic fields. Our results reveal a helical ground state with a decreasing pitch from 40 to 35 nm upon cooling, and a skyrmion phase stable in applied magnetic fields of 10-30 mT, and over an unusually wide temperature range for chiral magnets of 6 K ([Formula: see text], [Formula: see text] K).

View Article and Find Full Text PDF

Excited-State Proton Transfer Dynamics of Cyanonaphthol in Protic Ionic Liquids: Concerted Effects of Basicity of Anions and Alkyl Carbons in Cations.

J Phys Chem B

January 2025

Department of Applied Chemistry, Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoyo 610-0321, Japan.

Excited-state proton transfer (ESPT) reactions of 5-cyano-2-naphthol (5CN2) and 5,8-dicyano-2-naphthol (DCN2) were investigated in protic ionic liquids (PILs) composed of quaternary ammonium (NH) ( = 2, 4, or 8) and hexanoate (CHCOO) using time-resolved fluorescence spectroscopy. The effects of the number of alkyl carbons in the cation and the basicity of the anion on the reaction yield and dynamics were examined. In a series of [NH][CHCOO], fluorescence from the hydrogen-bonding complex (AHBX) of a proton-dissociated form (RO) with a solvent acid in the electronic excited state was observed between the fluorescence bands of an acidic form (ROH) and an anionic form (RO) as in the case of [NH][CFCOO] (Fujii et al.

View Article and Find Full Text PDF

Healthcare avoidance or delays for wounds and related skin- and soft-tissue infections are often attributed to negative interactions with medical providers. An infrastructural violence framework posits that healthcare infrastructure serves as a material channel for structural violence, maintaining inequities in healthcare experiences and outcomes. Infrastructural violence ensues when infrastructure is designed for some members or groups within a society while perpetuating violence among others.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!