High-fat diet (HFD) feeding is known to induce metabolic dysregulation, however, less is known on its impact in promoting the hypercoagulable state. This current study aimed to evaluate platelet-monocyte aggregate (PMA) formation following short-term HFD feeding. This is particularly important for understanding the link between inflammation and the hypercoagulable state during the early onset of metabolic dysregulation. To explore such a hypothesis, mice were fed a HFD for 8 weeks, with body weights as well as insulin and blood glucose levels monitored on a weekly basis during this period. Basal hematological measurements were determined and the levels of spontaneous peripheral blood PMAs were assessed using whole blood flow cytometry. The results showed that although there were no significant differences in body weights, mice on HFD displayed impaired glucose tolerance and markedly raised insulin levels. These metabolic abnormalities were accompanied by elevated baseline PMA levels as an indication of hypercoagulation. Importantly, it was evident that baseline levels of monocytes, measured using the CD14 monocyte marker, were significantly decreased in HFD-fed mice when compared to controls. In summary, the current evidence shows that in addition to causing glucose intolerance, such as that identified in a prediabetic state, HFD-feeding can promote undesirable hypercoagulation, the major consequence implicated in the development of cardiovascular complications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6893711 | PMC |
http://dx.doi.org/10.3390/nu11112695 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Biomedical Sciences, Grand Valley State University, Allendale, MI 49401, USA.
Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.
View Article and Find Full Text PDFNutrients
January 2025
National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China.
Objective: This study aims to identify whether the development of insulin resistance (IR) induced by high selenium (Se) is related to serine deficiency via the inhibition of the de novo serine synthesis pathway (SSP) by the administrations of 3-phosphoglycerate dehydrogenase (PHGDH) inhibitor (NCT503) or exogenous serine in mice.
Method: forty-eight male C57BL/6J mice were randomly divided into four groups: adequate-Se (0.1 mgSe/kg), high-Se (0.
Nutrients
January 2025
Department of Sports Medicine and Sports Nutrition, Ruhr University Bochum, 44801 Bochum, Germany.
Background/objectives: Low energy availability (LEA) can cause impaired reproductive function, bone health issues, and suppressed immune function, and may result in decreased performance and overall health status. The purpose of this study was to investigate adaptions of body composition, blood status, resting metabolic rate, and endurance performance to gain more comprehensive insights into the symptoms of LEA and the adaptive effects in the athlete population (active women (n = 11) and men (n = 11)).
Methods: Three treatments were defined as 45 (EA45, control), 30 (EA30), and 10 (EA10) kcal/kg FFM/day and randomly assigned.
Nutrients
January 2025
Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Yanpu Township 90741, Taiwan.
: This study investigated the wound-healing potential of hispolon, a polyphenolic pigment derived from medicinal mushrooms, under diabetic conditions using both in vitro and in vivo models. : In the in vitro assays, L929 fibroblast cells exposed to high glucose (33 mmol/L) were treated with hispolon at concentrations of 2.5, 5, 7.
View Article and Find Full Text PDFNutrients
January 2025
Neonatal Intensive Care Unit, Department of Women's and Children's Health, University Hospital of Padova, 35128 Padova, Italy.
Background: Preterm infants (PIs) are more susceptible to neurodevelopmental impairment compared with term newborns. Adequate postnatal growth has been associated with improved neurocognitive outcomes; therefore, optimization of nutrition may positively impact the neurodevelopment of PIs.
Objective: This study focused on macronutrient parenteral nutrition (PN) intake during the Neonatal Intensive Care Unit stay and their associations with neurodevelopmental outcomes in PIs in the first two years of life.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!