A new early Eocene deperetellid tapiroid illuminates the origin of Deperetellidae and the pattern of premolar molarization in Perissodactyla.

PLoS One

Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China.

Published: March 2020

Deperetellidae is a clade of peculiar, Asian endemic tapiroids from the early and middle Eocene. The previously published material mainly comprises maxillae, mandibles, and some postcranial elements. However, the absence of cranial materials and primitive representatives of the deperetellids obscures their phylogenetic relationships within Tapiroidea. Furthermore, derived deperetellids have completely molarized premolars, but the pattern of their evolution remains unclear. Here, we report a nearly complete skull and some carpals of a new basal deperetellid tapiroid, Irenolophus qii gen. et sp. nov., from the late early Eocene of the Erlian Basin, Inner Mongolia, China. We suggest that deperetellids (along with Tapiridae) probably also arose from some basal 'helaletids', based on the reduced, flat, lingually depressed metacones on the upper molars, the trend towards the bilophodonty on the lower molars, and a shallow narial notch with the premaxilla in contact with the nasal. The molarization of the premolars in Deperetellidae from Irenolophus through Teleolophus to Deperetella was initiated and gradually enhanced by the separation between the paraconule and the protocone. That pattern differs from the protocone-hypocone separation in helaletids, tapirids, and most rhinoceroses, and the metaconule-derived pseudohypocone in amynodontids. However, the specific relationship of deperetellids within Tapiroidea and the roles of different patterns of premolar molarization in perissodactyl evolution need further and comprehensive study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6839866PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0225045PLOS

Publication Analysis

Top Keywords

early eocene
8
deperetellid tapiroid
8
premolar molarization
8
eocene deperetellid
4
tapiroid illuminates
4
illuminates origin
4
origin deperetellidae
4
deperetellidae pattern
4
pattern premolar
4
molarization perissodactyla
4

Similar Publications

Morphology, phylogeography, phylogeny, and taxonomy of (Apiaceae).

Front Plant Sci

January 2025

Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.

Background: The genus is endemic to China and belongs to the Apiaceae family, which is widely distributed in the Himalaya-Hengduan Mountains (HHM) region. However, its morphology, phylogeny, phylogeography, taxonomy, and evolutionary history were not investigated due to insufficient sampling and lack of population sampling and plastome data. Additionally, we found that was not similar to members but resembled species in morphology, indicating that the taxonomic position of needs to be re-evaluated.

View Article and Find Full Text PDF

Morphological study of the anterior dentition in Raoellidae (Mammalia, Artiodactyla), new insight on their dietary habits.

J Anat

January 2025

Institut des Sciences de l'Évolution de Montpellier (ISEM), Univ Montpellier, CNRS, IRD, Montpellier, France.

Raoellidae are small artiodactyls from the Indian subcontinent closely related to stem cetaceans. They bring crucial information to understand the early phase of the land-to-water transition in Cetacea. If they are considered to be partly aquatic, the question of their dietary habits remains partly understood due to their "transitional" morphology.

View Article and Find Full Text PDF

Shrews are among the most speciose of mammalian clades, but their evolutionary history is poorly understood. Their fossil record is fragmentary and even the anatomy of living groups is not well documented. Here, we incorporate the oldest, most complete fossil shrew yet known into the first phylogenetic analysis of the group to include molecular, morphological and temporal data.

View Article and Find Full Text PDF

Introduction: Raoellidae are small artiodactyls retrieved from the middle Eocene of Asia (ca. -47 Ma) and closely related to stem Cetacea. Morphological observations of their endocranial structures allow for outlining some of the early steps of the evolutionary history of the cetacean brain.

View Article and Find Full Text PDF
Article Synopsis
  • Pseudonotherobius kohlsi and Megalomus? coloradensis are newly identified species of lacewings from the early Eocene era, found in Colorado’s Green River Formation.
  • Pseudonotherobius is characterized by a specific crossvein in its forewings and a uniquely dilated hind wing, which sets it apart within its family.
  • The genus is tentatively placed within the Carobiinae subfamily, hinting at its similarity to a modern Australian lacewing species.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!