Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We investigated a potential use of a 3D tetraculture brain microphysiological system (BMPS) for neurotoxic chemical agent screening. This platform consists of neuronal tissue with extracellular matrix (ECM)-embedded neuroblastoma cells, microglia, and astrocytes, and vascular tissue with dynamic flow and membrane-free culture of the endothelial layer. We tested the broader applicability of this model, focusing on organophosphates (OPs) Malathion (MT), Parathion (PT), and Chlorpyrifos (CPF), and chemicals that interact with GABA and/or opioid receptor systems, including Muscimol (MUS), Dextromethorphan (DXM), and Ethanol (EtOH). We validated the BMPS platform by measuring the neurotoxic effects on barrier integrity, acetylcholinesterase (AChE) inhibition, viability, and residual OP concentration. The results show that OPs penetrated the model blood brain barrier (BBB) and inhibited AChE activity. DXM, MUS, and EtOH also penetrated the BBB and induced moderate toxicity. The results correlate well with available in vivo data. In addition, simulation results from an in silico physiologically-based pharmacokinetic/pharmacodynamic (PBPK/PD) model that we generated show good agreement with in vivo and in vitro data. In conclusion, this paper demonstrates the potential utility of a membrane-free tetraculture BMPS that can recapitulate brain complexity as a cost-effective alternative to animal models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6839879 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0224657 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!