Loss of midbrain dopaminergic neurons in Parkinson's disease not only induces motor impairments but also leads to the development of non-motor symptoms such as memory impairment, anxiety and depression. Dopaminergic axons directly innervate hippocampus and release dopamine in the local environment of hippocampus, and hence are directly involved in the modulation of hippocampal-dependent functions. Studies have explored the potential effect of dopamine on adult hippocampal neurogenesis. However, it is not well defined whether oxidative damage and inflammation could be associated with alteration in adult hippocampal neurogenesis. In the present study, we analyzed the effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine on adult hippocampal neurogenesis and how it is associated with inflammatory conditions in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson's disease-like phenotypes. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice exhibited significantly reduced dopaminergic neurons and dopamine content that resulted in impairment of motor functions. Interestingly, the formation of endogenous neuronal precursor cells and the number of neuroblasts in the hippocampus were significantly increased following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine treatment. Net hippocampal neurogenesis was also reduced in the hippocampus after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine treatment. These effects in the hippocampus were associated with increased oxidative stress markers and a massive reactive gliosis. Taken together, our results suggest that degeneration of midbrain dopaminergic neurons directly affects the local hippocampal microenvironment by enhancing inflammatory influences. The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced inflammatory reaction in the hippocampus may alter the endogenous regenerative capacity of the brain. Therefore, anti-inflammatory agents could be a potential therapy for the improvement of the endogenous regenerative capacity of the aging or neurodegenerative brain.

Download full-text PDF

Source
http://dx.doi.org/10.1097/FBP.0000000000000516DOI Listing

Publication Analysis

Top Keywords

hippocampal neurogenesis
20
dopaminergic neurons
12
adult hippocampal
12
oxidative stress
8
midbrain dopaminergic
8
1-methyl-4-phenyl-1236-tetrahydropyridine treatment
8
endogenous regenerative
8
regenerative capacity
8
hippocampal
6
hippocampus
6

Similar Publications

Hippocampal transcriptome analysis in ClockΔ19 mice identifies pathways associated with glial cell differentiation and myelination.

J Affect Disord

January 2025

Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China. Electronic address:

Background: ClockΔ19 mice demonstrate behavioral characteristics and neurobiological changes that closely resemble those observed in bipolar disorder (BD). Notably, abnormalities in the hippocampus have been observed in patients with BD, yet direct molecular investigation of human hippocampal tissue remains challenging due to its limited accessibility.

Methods: To model BD, ClockΔ19 mice were employed.

View Article and Find Full Text PDF

Aim: The present investigation aimed to explore in rats the early postnatal dysfunction of the brain muscarinic cholinergic system (EPDMChS) during the most vulnerable period of postnatal development, as the possible main factor for changes in adult hippocampal neurogenesis and disorders in hippocampus-dependent spatial learning and memory.

Methods: White inbred rats (n=15 in each group) were used. EPDMCHS was produced by a new method, which includes early postnatal blocking of M1-M5 muscarinic acetylcholine receptors in the rat pups, using subcutaneous injection of Scopolamine during postnatal days 7-28.

View Article and Find Full Text PDF

Natural variations of adolescent neurogenesis and anxiety predict the hierarchical status of adult inbred mice.

EMBO Rep

January 2025

Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland.

Hierarchy provides a survival advantage to social animals in challenging circumstances. In mice, social dominance is associated with trait anxiety which is regulated by adult hippocampal neurogenesis. Here, we test whether adolescent hippocampal neurogenesis may regulate social dominance behavior in adulthood.

View Article and Find Full Text PDF

Down syndrome (DS) is a genetic intellectual disorder caused by trisomy of chromosome 21 (Hsa21) and presents with a variety of phenotypes. The correlation between the chromosomal abnormality and the resulting symptoms is unclear, partly due to the spectrum of impairments observed. However, it has been determined that trisomy 21 contributes to neurodegeneration and impaired neurodevelopment resulting from decreased neurotransmission, neurogenesis, and synaptic plasticity.

View Article and Find Full Text PDF

Disruption of gut microbiota balance is known to contribute to the development of anxiety; however, it remains unclear whether dysbiosis-induced anxiety involves the glycogen synthase kinase-3β (GSK-3β)/cAMP response element binding protein (CREB)/brain-derived neurotrophic factor (BDNF) pathway and neurogenesis in the ventral hippocampal dentate gyrus (DG). In this study, Male ddY mice were administered an antibacterial cocktail to induce dysbiosis. The dysbiosis model displayed anxiety-like behaviors in the hole-board and elevated plus-maze tests, decreased the phosphorylation levels of GSK-3β (Ser9) and CREB, decreased the expression level of BDNF in the ventral hippocampus, and reduced neurogenesis in the ventral hippocampal DG.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!