MicroRNAs are small non-coding RNAs that are implicated in various biological processes. Hsa-miR-6165 (miR-6165), located in the p75NTR gene, is known to induce apoptosis in human cell lines, but its mechanism of action is not fully understood yet. Here, we predicted the insulin-like growth factor 1 receptor (IGF-1R) gene as a bona fide target for miR-6165. The overexpression of miR-6165 in SW480 cells resulted in significant downregulation of IGF-1R expression as detected by real time quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA). Also, it resulted in reduced transcript levels of AKT2, AKT3, PI3KR3, PI3KR5, CCND1, c-MYC and P21 genes detected by RT-qPCR analysis. In addition, a direct interaction between miR-6165 and a 3'UTR sequence of the IGF-1R gene was verified through a dual luciferase assay. Furthermore, miR-6165 and IGF-1R showed opposite patterns of expression during the neural differentiation process of NT2 cells. Annexin V analysis and MTT assay showed that miR-6165 overexpression was followed by increased apoptosis and reduced the viability rate of SW480 cells. Moreover, a lower expression level of miR-6165 was detected in high-grade colorectal tumors compared with low-grade tumors. Taken together, the results of our study suggest a tumor suppressive role of miR-6165 in colorectal cancer, which seems to take place by regulating IGF-1R gene expression.

Download full-text PDF

Source
http://dx.doi.org/10.1515/hsz-2018-0421DOI Listing

Publication Analysis

Top Keywords

sw480 cells
12
igf-1r gene
12
insulin-like growth
8
receptor igf-1r
8
igf-1r expression
8
mir-6165
8
mir-6165 overexpression
8
assay mir-6165
8
igf-1r
6
expression
5

Similar Publications

Fat mass and obesity-associated protein (FTO) was the earliest discovered m6A RNA demethylase. Previous studies have indicated that m6A modifications significantly influence the development, progression, and prognosis of various cancers. This study aimed to explore the role of FTO overexpression in colorectal cancer development, as well as its biological functions.

View Article and Find Full Text PDF

Background: In approximately 80% of colorectal cancer cases, mutations in the adenomatous polyposis coli () gene disrupt the Wingless-related integration site (Wnt)/β-catenin signaling pathway, a crucial factor in carcinogenesis. This disruption may result in consequences such as aberrant spindle segregation and mitotic catastrophe. This study aimed to analyze the effectiveness of the ethanolic extract of red okra () pods (EEROP) in inducing apoptosis in colorectal cancer cells (SW480) by inhibiting the Wnt/β-catenin signaling pathway.

View Article and Find Full Text PDF

The most common method for detection of apoptosis is flow cytometry. In previously published studies there are some uncertainties and problems about the preparation of adherent cell lines for analysis. Thus, the aim of this study is to determine and describe how preparing the sample of SW-480 cells in two different ways affects the reliability of the results.

View Article and Find Full Text PDF

In present studies, six Schiff bases were prepared, characterized and evaluated for their anti-tumor activity against the colorectal cancer cell line SW-480. The test compounds were characterized by various physico-chemical techniques such as M. P.

View Article and Find Full Text PDF

TRPV4 as a Novel Regulator of Ferroptosis in Colon Adenocarcinoma: Implications for Prognosis and Therapeutic Targeting.

Dig Dis Sci

January 2025

Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.

Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!