Probing the "Gas Tunnel" between Neighboring Nanobubbles.

Langmuir

Robotics Institute, School of Mechanical Engineering and Automation , Beihang University, No. 37 Xueyuan Road, Haidian district , Beijing 100191 , P. R. China.

Published: November 2019

Surface nanobubbles are the main gaseous domains forming at solid-liquid interfaces, and their abnormally long lifetime (stability) is still an open question. A hypothesis "gas tunnel" was presented in a recent simulation study [ , (3), 2603-2609], which was thought to connect two neighboring nanobubbles and make the nanobubbles remain stable. Herein, we aim to experimentally investigate the existence of gas tunnel and its role in governing nanobubble dynamics. By using an atomic force microscope, mutual effects between different gaseous domains including nanobubbles, nanopancakes, and nanobubble-pancake composite on a PS substrate undergoing violent tip perturbation and their effects on the undisturbed neighbors were investigated. The pancake between two nanobubbles can behave as a visible gas tunnel under the tip-bubble interaction. Based on statistical analysis of volume change in the different gas domains, the concept of a generalized gas tunnel is presented and experimentally verified. Nanobubbles are surrounded by a water depletion layer which will act as a channel along solid/liquid surfaces for adjacent nanobubbles to communicate with each other. Moreover, the change in contact angle of nanobubbles with the concentration of local gas oversaturation was studied, and the equilibrium contact angle of nanobubbles is further verified experimentally.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.9b02682DOI Listing

Publication Analysis

Top Keywords

gas tunnel
12
nanobubbles
10
"gas tunnel"
8
neighboring nanobubbles
8
gaseous domains
8
contact angle
8
angle nanobubbles
8
gas
5
probing "gas
4
tunnel" neighboring
4

Similar Publications

Soil magnetic records in Quaternary red earth (QRE) deposits contain a valuable record of paleoclimate information, providing insights into controls on Earth's climate system in the past and potentially helping to predict its response to perturbations in the future. Here, analysis of the environmental magnetism and mineralogy of the Xuancheng QRE (Anhui Province, South China) shows that magnetic variation was strongly linked to production of authigenic ferrimagnetic minerals such as maghemite. Fine-grained maghemite formed during the weathering-related transformation of iron-bearing illite to vermiculite, generating aggregates of vermiculite or mixed-layer illite-vermiculite.

View Article and Find Full Text PDF

Germanium nanocrystal non-volatile memory devices: fabrication, charge storage mechanism and characterization.

Nanoscale

January 2025

Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583.

The widespread proliferation and increasing use of portable electronic devices and wearables, and the recent developments in artificial intelligence and internet-of-things, have fuelled the need for high-density and low-voltage non-volatile memory devices. Nanocrystal memory, an emergent non-volatile memory (NVM) device that makes use of the Coulomb blockade effect, can potentially result in the scaling of the tunnel dielectric layer to a very small thickness. Since the nanocrystals are electrically isolated, potential charge leakage paths localized defects in the thin tunnel dielectric can be substantially reduced, unlike that in a continuous polysilicon floating gate structure.

View Article and Find Full Text PDF

Performance Study of Ultraviolet AlGaN/GaN Light-Emitting Diodes Based on Superlattice Tunneling Junction.

Micromachines (Basel)

December 2024

State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xidian University, Xi'an 710071, China.

In this study, we aim to enhance the internal quantum efficiency (IQE) of AlGaN-based ultraviolet (UV) light-emitting diodes (LEDs) by using the short-period AlGaN/GaN superlattice as a tunnel junction (TJ) to construct polarized structures. We analyze in detail the effect of this polarized TJ on the carrier injection efficiency and investigate the increase in hole and electron density caused by the formation of 2D hole gas (2DHG) and 2D electron gas (2DEG) in the superlattice structure. In addition, a dielectric layer is introduced to evaluate the effect of stress changes on the tunneling probability and current spread in TJ.

View Article and Find Full Text PDF

Research on leakage and diffusion behavior of hydrogen doped natural gas in integrated pipeline corridors based on data drive.

Sci Rep

January 2025

Northwest Sichuan Gas District of Southwest Oil and Gasfield Company, Jiangyou, 621700, China.

With the wide application of hydrogen-doped natural gas (HBNG) in end users, laying pipelines in urban, comprehensive pipe corridors has become increasingly common. However, the leakage and diffusion of hydrogen-doped natural gas in confined or semi-confined spaces (e.g.

View Article and Find Full Text PDF

Tuning multi-scale pore structures in carbonaceous films via direct ink writing and sacrificial templates for efficient indoor formaldehyde removal.

J Hazard Mater

January 2025

Key Laboratory of Coastal Urban Resilient Infrastructures (Ministry of Education), College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Department of Building Science, Tsinghua University, Beijing 100084, China; State Key Laboratory of Intelligent Geotechnics and Tunnelling, Shenzhen University, Shenzhen 518060, China; State Key Laboratory of Subtropical Building and Urban Science, Shenzhen 518060, China; Key Laboratory of Eco Planning & Green Building (Tsinghua University), Ministry of Education, Beijing 100084, China. Electronic address:

The primary challenges impeding the extensive application of adsorption for indoor air purification have been low efficiency and effective capacity. To fill the research gap, we developed carbonaceous net-like adsorption films featuring multi-scale porous structures for efficient indoor formaldehyde removal. By optimizing the interfacial mass transfer and internal diffusion, we designed macro- to mesoscale meshes on the film surface and micro- to nano-scale pores within the materials, which were achieved by direct-ink-writing (DIW) printing and sacrificial template methods, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!