A series of tailor-made highly efficient and near-infrared (NIR) porphyrin-based acceptors is designed and synthesized for fullerene-free bulk-heterojunction (BHJ) organic solar cells. Constructing BHJ active layers using a PTB7-Th donor and porphyrin acceptors (P-), which have complementary absorption, accomplishes panchromatic photon-to-current conversion from 300 to 950 nm. Our study shows that side chains of the porphyrin acceptors fairly influence the molecular ordering and nanomorphology of the BHJ active layers. Significantly, the porphyrin acceptor with four dodecoxyl side chains (P-2) achieves an open-circuit voltage () of 0.80 V, short-circuit current density () of 13.94 mA cm, fill factor of 64.8%, and overall power conversion efficiency of 7.23%. This great performance is attributable to the ascendant light-harvesting capability in the visible and near-infrared region, a high-lying LUMO energy level, a relatively high and more balanced carrier mobilities, and more ordered face-on molecular packing, which is beneficial for obtaining high and .

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b15975DOI Listing

Publication Analysis

Top Keywords

porphyrin acceptors
12
solar cells
8
near-infrared region
8
bhj active
8
active layers
8
side chains
8
design n-type
4
porphyrin
4
n-type porphyrin
4
acceptors
4

Similar Publications

We report the synthesis of multifunctional periodic mesoporous organosilica nanoparticles (PMO NPs) with substantial two-photon absorption properties and targeting capability for two-photon excitation fluorescence (TPEF) and photodynamic therapy (TPE-PDT). Prepared using an adapted sol-gel synthesis, the nanoplatforms integrated two silylated chromophores in their three-dimensional matrix to maximize non-radiative Förster resonance energy transfer from a high two-photon absorption fluorophore donor to a porphyrin derivative acceptor, leading to an enhanced generation of reactive oxygen species. Combinations of biodegradable and non-biodegradable bis(triethoxysilyl)alkoxysilanes were employed for the synthesis of the NPs, and the corresponding photophysical studies revealed high efficiency levels of FRET.

View Article and Find Full Text PDF

Multitopic Corannulene-Porphyrin Hosts for Fullerenes: A Three-Layer Scaffold for Precisely Designed Supramolecular Ensembles.

Org Lett

December 2024

GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid E47011, Spain.

A method to synthesize cofacial dimeric porphyrins bearing eight corannulene units has been developed. It relies on the stability of octahedral CO-capped Ru(II) complexes linked by N-donor ligands. This specific arrangement provides an optimal scaffold to accommodate fullerenes by imposing corannulene groups at a precise distance and relative orientation.

View Article and Find Full Text PDF

The intermolecular host-guest complexation of head-to-tail monomers consisting of cleft-shaped bisporphyrin and trinitrofluorenone units connected by a chiral binaphthyl linker was employed to construct helically twisted supramolecular polymers. Results from 1H NMR, diffusion-ordered NMR spectroscopy, and viscometry experiments revealed that the supramolecular polymerization of these monomers follows a ring-chain competition mechanism. The introduction of bulky substituents at the linker significantly suppressed the formation of macrocyclic oligomers, whereas smaller alkyl chains facilitated the formation of the cyclic form.

View Article and Find Full Text PDF

Tetracyanopentacenequinone, a powerful electron acceptor, is fused directly to the porphyrin π-system to create a new class of donor-acceptor conjugates. Owing to the direct fusion and electron-deficient property of tetracyanopentacenequinone, strong intramolecular charge transfer both in the ground and excited states was witnessed. As a control, porphyrin fused with pentacenequinone was also investigated.

View Article and Find Full Text PDF

Sequential Energy and Electron Transfer in Metal-Organic Frameworks.

ACS Appl Mater Interfaces

December 2024

Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Republic of Korea.

This study presents the design and characterization of a triad metal-organic framework (MOF) system composed of pyrene, porphyrin, and phenyl-C-butyric acid (PCBA) for efficient energy and electron transfer processes mimicking natural photosynthesis. The triad MOF, synthesized through a mixed-ligand approach followed by postsynthetic modification, demonstrates sequential energy transfer from pyrene to porphyrin, followed by electron transfer to the PCBA acceptor. Time-resolved photoluminescence (TRPL) spectroscopy was employed to investigate the dynamics of energy and charge transfer, revealing fast interligand energy transfer and subsequent charge separation in the MOF structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!