Domain swapping is a widespread oligomerization process that is observed in a large variety of protein families. In the large superfamily of substrate-binding proteins, non-monomeric members have rarely been reported. The arginine-binding protein from Thermotoga maritima (TmArgBP), a protein endowed with a number of unusual properties, presents a domain-swapped structure in its dimeric native state in which the two polypeptide chains mutually exchange their C-terminal helices. It has previously been shown that mutations in the region connecting the last two helices of the TmArgBP structure lead to the formation of a variety of oligomeric states (monomers, dimers, trimers and larger aggregates). With the aim of defining the structural determinants of domain swapping in TmArgBP, the monomeric form of the P235GK mutant has been structurally characterized. Analysis of this arginine-bound structure indicates that it consists of a closed monomer with its C-terminal helix folded against the rest of the protein, as typically observed for substrate-binding proteins. Notably, the two terminal helices are joined by a single nonhelical residue (Gly235). Collectively, the present findings indicate that extending the hinge region and conferring it with more conformational freedom makes the formation of a closed TmArgBP monomer possible. On the other hand, the short connection between the helices may explain the tendency of the protein to also adopt alternative oligomeric states (dimers, trimers and larger aggregates). The data reported here highlight the importance of evolutionary control to avoid the uncontrolled formation of heterogeneous and potentially harmful oligomeric species through domain swapping.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6839819PMC
http://dx.doi.org/10.1107/S2053230X1901464XDOI Listing

Publication Analysis

Top Keywords

domain swapping
12
arginine-binding protein
8
protein thermotoga
8
thermotoga maritima
8
substrate-binding proteins
8
oligomeric states
8
dimers trimers
8
trimers larger
8
larger aggregates
8
protein
6

Similar Publications

A fucose-binding superlectin from Enterobacter cloacae with high Lewis and ABO blood group antigen specificity.

J Biol Chem

December 2024

Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany; Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig; Department of Chemistry, PharmaScienceHub (PSH), Saarland University, D-66123 Saarbrücken, Germany.

Bacteria frequently employ carbohydrate-binding proteins, so-called lectins, to colonize and persist in a host. Thus, bacterial lectins are attractive targets for the development of new antiinfectives. To find new potential targets for antiinfectives against pathogenic bacteria, we searched for homologs of Pseudomonas aeruginosa lectins and identified homologs of LecA in Enterobacter species.

View Article and Find Full Text PDF

Polyketide Synthase Acyltransferase Domain Swapping for Enhanced EPA Recognition and Efficient Coproduction of EPA and DHA in sp.

J Agric Food Chem

December 2024

School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China.

Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are important polyunsaturated fatty acids (PUFAs) used as nutritional supplements. The natural EPA content in sp. is low, and traditional strategies to increase EPA levels often compromise DHA content or lipid accumulation, hindering industrial coproduction.

View Article and Find Full Text PDF

The antibiotic 2-nitroimidazole (2NI) or azomycin, used for treating drug-resistant tuberculosis and imaging tumor hypoxia, requires activation by bacterial nitroreductases for its antibiotic and cytotoxic effect. Mycobacterium sp. JS330 produces 2-nitroimidazole nitrohydrolase (NnhA) that circumvents 2NI activation, conferring 2NI resistance by hydrolysing it to nitrite and imidazol-2-one (IM2O) instead.

View Article and Find Full Text PDF

Cellular signaling networks are modulated by multiple protein-protein interaction domains that coordinate extracellular inputs and processes to regulate cellular processes. Several of these domains recognize short linear motifs, or SLiMs, which are often highly conserved and are closely regulated. One such domain, the Src homology 3 (SH3) domain, typically recognizes proline-rich SLiMs and is one of the most abundant SLiM-binding domains in the human proteome.

View Article and Find Full Text PDF

Human TMC1 and TMC2 are mechanically gated ion channels.

Neuron

December 2024

Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China; Department of Neurobiology, School of Basic Medicine, Capital Medical University, Beijing, China; Institute for Medical Physiology, Chinese Institutes for Medical Research, Beijing, China. Electronic address:

Mammalian transmembrane channel-like proteins 1 and 2 (TMC1 and TMC2) have emerged as very promising candidate mechanotransduction channels in hair cells. However, controversy persists because the heterogeneously expressed TMC1/2 in cultured cells lack evidence of mechanical gating, primarily due to their absence from the plasma membrane. By employing domain swapping with OSCA1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!