A nearly single cycle intense terahertz (THz) pulse with peak electric and magnetic fields of 0.5  MV/cm and 0.16 T, respectively, excites both modes of spin resonances in the weak antiferromagnet FeBO_{3}. The high frequency quasiantiferromagnetic mode is excited resonantly and its amplitude scales linearly with the strength of the THz magnetic field, whereas the low frequency quasiferromagnetic mode is excited via a nonlinear mechanism that scales quadratically with the strength of the THz electric field and can be regarded as a THz inverse Cotton-Mouton effect. THz optomagnetism is shown to be more energy efficient than similar effects reported previously for the near-infrared spectral range.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.123.157202DOI Listing

Publication Analysis

Top Keywords

mode excited
8
strength thz
8
thz
5
terahertz optomagnetism
4
optomagnetism nonlinear
4
nonlinear thz
4
thz excitation
4
excitation ghz
4
ghz spin
4
spin waves
4

Similar Publications

With the rapid development of thermally activated delayed fluorescence (TADF) materials, achieving efficient reverse intersystem crossing (RISC) to mitigate triplet-triplet annihilation has emerged as a prominent research focus. This study investigates five derivative molecules, featuring varied bridging atoms/groups (O, S, Se, -CH-), designed from the reported TADF molecule with through-space charge transfer (TSCT) properties. Utilizing time-dependent density functional theory coupled with a PCM solution model, their excited state behaviors were simulated in a toluene environment.

View Article and Find Full Text PDF

Background: The lateral entorhinal cortex (LEC), followed by area CA1 of hippocampus, are interconnected brain areas implicated early in Alzheimer's disease (AD). Processing of LEC input by CA1 pyramidal neurons (PNs) is critical for non-spatial memory, in which deficits are seen in early AD. How this process is affected by tauopathy is unclear.

View Article and Find Full Text PDF

Resonant pumping of the electronic f-f transitions in the orbital multiplet of dysprosium ions (Dy^{3+}) in a complex perovskite DyFeO_{3} is shown to impulsively launch THz lattice dynamics corresponding to the B_{2g} phonon mode, which is dominanted by the motion of Dy^{3+} ions. The findings, supported by symmetry analysis and density-functional theory calculations, not only provide a novel route for highly selective excitation of the rare-earth crystal lattices but also establish important relationships between the symmetry of the electronic and lattice excitations in complex oxides.

View Article and Find Full Text PDF

A fundamental manifestation of the nontrivial correlations of an incompressible fractional quantum Hall (FQH) state is that an electron added to it disintegrates into more elementary particles, namely fractionally-charged composite fermions (CFs). We show here that the Girvin-MacDonald-Platzman (GMP) density-wave excitation of the ν=n/(2pn±1) FQH states also splits into more elementary single CF excitons. In particular, the GMP graviton, which refers to the recently observed spin-2 neutral excitation in the vanishing wave vector limit [Liang et al.

View Article and Find Full Text PDF

High-Definition, Video-Rate Triple-Channel NIR-II Imaging Using Shadowless Lamp Excitation and Illumination.

ACS Nano

January 2025

State Key Laboratory of Extreme Photonics and Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China.

Multichannel imaging in the second near-infrared (NIR-II) window offers vital and comprehensive information for complex surgical environments, yet a simple, high-quality, video-rate multichannel imaging method with low safety risk remains to be proposed. Centered at the superior NIR-IIx window of 1400-1500 nm, triple-channel imaging coordinated with 1000-1100 and 1700-1880 nm (NIR-IIc) achieves exceptional clarity and an impressive signal-to-crosstalk ratio as high as 22.10.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!