The resonant absorption of light by an ensemble of absorbers decreases when the resonance is inhomogeneously broadened. Recovering the lost absorption cross section is of great importance for various applications of light-matter interactions, particularly in quantum optics, but no recovery mechanism has yet been identified and successfully demonstrated. Here, we formulate the limit set by the inhomogeneity on the absorption, and present a mechanism able to circumvent this limit and fully recover the homogeneous absorption of the ensemble. We experimentally study this mechanism using two different level schemes in atomic vapors and demonstrate up to fivefold enhancement of the absorption above the inhomogeneous limit. Our scheme relies on light shifts induced by auxiliary fields and is thus applicable to various physical systems and inhomogeneity mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.123.173203 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!