Collective Quantum Memory Activated by a Driven Central Spin.

Phys Rev Lett

Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom.

Published: October 2019

Coupling a qubit coherently to an ensemble is the basis for collective quantum memories. A single driven electron in a quantum dot can deterministically excite low-energy collective modes of a nuclear spin ensemble in the presence of lattice strain. We propose to gate a quantum state transfer between this central electron and these low-energy excitations-spin waves-in the presence of a strong magnetic field, where the nuclear coherence time is long. We develop a microscopic theory capable of calculating the exact time evolution of the strained electron-nuclear system. With this, we evaluate the operation of quantum state storage and show that fidelities up to 90% can be reached with a modest nuclear polarization of only 50%. These findings demonstrate that strain-enabled nuclear spin waves are a highly suitable candidate for quantum memory.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.123.140502DOI Listing

Publication Analysis

Top Keywords

collective quantum
8
quantum memory
8
nuclear spin
8
quantum state
8
quantum
5
memory activated
4
activated driven
4
driven central
4
central spin
4
spin coupling
4

Similar Publications

We outline two general theoretical techniques to simulate polariton quantum dynamics and optical spectra under the collective coupling regimes described by a Holstein-Tavis-Cummings (HTC) model Hamiltonian. The first one takes advantage of sparsity of the HTC Hamiltonian, which allows one to reduce the cost of acting polariton Hamiltonian onto a state vector to the linear order of the number of states, instead of the quadratic order. The second one is applying the well-known Chebyshev series expansion approach for quantum dynamics propagation and to simulate the polariton dynamics in the HTC system; this approach allows us to use a much larger time step for propagation and only requires a few recursive operations of the polariton Hamiltonian acting on state vectors.

View Article and Find Full Text PDF

We demonstrate that at the rim of the photon sphere of a black hole, the quantum statistics transition takes place in any multi-particle system of indistinguishable particles, which passes through this rim to the inside. The related local departure from Pauli exclusion principle restriction causes a decay of the internal structure of collective fermionic systems, including the collapse of Fermi spheres in compressed matter. The Fermi sphere decay is associated with the emission of electromagnetic radiation, taking away the energy and entropy of the falling matter without unitarity violation.

View Article and Find Full Text PDF

Interaction-Enhanced Superradiance of a Rydberg-Atom Array.

Phys Rev Lett

December 2024

CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China.

We study the superradiant phase transition of an array of Rydberg atoms in a dissipative microwave cavity. Under the interplay of the cavity field and the long-range Rydberg interaction, the steady state of the system exhibits an interaction-enhanced superradiance, with vanishing critical atom-cavity coupling rates at a discrete set of interaction strengths. We find that, while the phenomenon can be analytically understood in the case of a constant all-to-all interaction, the enhanced superradiance persists under typical experimental parameters with spatially dependent interactions, but at modified critical interaction strengths.

View Article and Find Full Text PDF

We consider turbulence of waves interacting weakly via four-wave scattering (sea waves, plasma waves, spin waves, etc.). In the first order in the interaction, a closed kinetic equation has stationary solutions describing turbulent cascades.

View Article and Find Full Text PDF

Reinforcement Learning Optimization of the Charging of a Dicke Quantum Battery.

Phys Rev Lett

December 2024

Freie Universität Berlin, Department of Mathematics and Computer Science, Arnimallee 6, 14195 Berlin, Germany.

Quantum batteries are energy-storing devices, governed by quantum mechanics, that promise high charging performance thanks to collective effects. Because of its experimental feasibility, the Dicke battery-which comprises N two-level systems coupled to a common photon mode-is one of the most promising designs for quantum batteries. However, the chaotic nature of the model severely hinders the extractable energy (ergotropy).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!