Amyloid fibril formation is a hallmark of neurodegenerative disease caused by protein aggregation. Oligomeric protein states that arise during the process of fibril formation often coexist with mature fibrils and are known to cause cell death in disease model systems. Progress in this field depends critically on development of analytical methods that can provide information about the mechanisms and species involved in oligomerization and fibril formation. Here, we demonstrate how the powerful combination of diffusion NMR and multilinear data analysis can efficiently disentangle the number of involved species, their kinetic rates of formation or disappearance, spectral contributions, and diffusion coefficients, even without prior knowledge of the time evolution of the process or chemical shift assignments of the various species. Using this method we identify oligomeric species that form transiently during aggregation of human superoxide dismutase 1 (SOD1), which is known to form misfolded aggregates in patients with amyotrophic lateral sclerosis. Specifically, over a time course of 42 days, during which SOD1 fibrils form, we detect the disappearance of the native monomeric species, formation of a partially unfolded intermediate in the dimer to tetramer size range, subsequent formation of a distinct similarly sized species that dominates the final spectrum detected by solution NMR, and concomitant appearance of small peptide fragments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7188332 | PMC |
http://dx.doi.org/10.1021/jacs.9b07952 | DOI Listing |
Rev Cardiovasc Med
January 2025
Department of Cardiology, Renmin Hospital of Wuhan University, 430060 Wuhan, Hubei, China.
With a better understanding of the susceptibility to atrial fibrillation (AF) and the thrombogenicity of the left atrium, the concept of atrial cardiomyopathy (ACM) has emerged. The conventional viewpoint holds that AF-associated hemodynamic disturbances and thrombus formation in the left atrial appendage are the primary causes of cardiogenic embolism events. However, substantial evidence suggests that the relationship between cardiogenic embolism and AF is not so absolute, and that ACM may be an important, underestimated contributor to cardiogenic embolism events.
View Article and Find Full Text PDFPRX Life
June 2024
Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
Biomolecular condensates are dynamic intracellular entities defined by their sequence- and composition-encoded material properties. During aging, these properties can change dramatically, potentially leading to pathological solidlike states, the mechanisms of which remain poorly understood. Recent experiments reveal that the aging of condensates involves a complex interplay of solvent depletion, strengthening of sticker links, and the formation of rigid structural segments such as beta fibrils.
View Article and Find Full Text PDFCompr Rev Food Sci Food Saf
January 2025
State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China.
Most nutraceuticals have low stability and solubility, making it difficult to achieve ideal bioavailability by directly incorporating into food. Therefore, constructing delivery systems to protect nutraceuticals is an essential strategy. Proteins and polysaccharides have become ideal materials for encapsulating nutraceuticals due to their superior nutritional value, edible safety, and physicochemical properties.
View Article and Find Full Text PDFTransl Neurodegener
January 2025
Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-Ro Seo-Gu, Daejeon, 35365, Republic of Korea.
Alzheimer's disease (AD) is the most common type of dementia. Monoclonal antibodies (MABs) serve as a promising therapeutic approach for AD by selectively targeting key pathogenic factors, such as amyloid-β (Aβ) peptide, tau protein, and neuroinflammation. Specifically, based on their efficacy in removing Aβ plaques from the brains of patients with AD, the U.
View Article and Find Full Text PDFBiochemistry (Mosc)
December 2024
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
Nuclear export protein (NEP) of the influenza A virus, being one of the key components of the virus life cycle, is a promising model for studying characteristics of formation of amyloids by viral proteins. Using atomic force microscopy, comparative study of aggregation properties of the recombinant NEP variants, including the protein of natural structure, as well as modified variants with N- and C-terminal affinity His-tags, was carried out. All protein variants under physiological conditions are capable of forming aggregates of various morphologies: micelle-like nanoparticles, flexible protofibrils, rigid amyloid fibrils, etc.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!