The unique properties of covalent triazine-based organic framework/polymers, including large surface area, hydrophilic-lipophilic-balanced adsorption, and economical preparation, make it a promising candidate as a stationary phase for high-performance liquid chromatography. However, irregular shapes and wide size distributions of such particles hinder column packing, resulting in a low column efficiency or a high back pressure. Herein, we describe the fabrication of SiO@ covalent triazine-based organic polymer (CTP) core-shell microspheres with a distinct sphere-coating-sphere appearance using aminosilica as the supporting substrate to grow the CTP shell. By adjusting the amount of reactants, the thickness of the CTP shell, which consists of triazine and 1,3,5-triphenylbenzene monomers, was easily controlled. The developed core-shell microspheres were characterized via scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, solid-state C nuclear magnetic resonance analysis, and N adsorption experiments. The synergism of the triazine and aromatic moieties on CTP provides the new stationary phase with multiple retention mechanisms, including hydrophobic, π-π, electron donor-acceptor, hydrogen-bonding interactions, and so forth. On the basis of these interactions, successful separation and higher shape selectivity were achieved among several analytes that vary in polarity under both reversed-phase and hydrophilic interaction liquid chromatography conditions. Therefore, SiO@CTP microspheres combine the advantages of good column packing properties of the uniform monodisperse silica microspheres and the recognition performance of CTP, generating flexible selectivity and application prospect for both hydrophilic and hydrophobic analytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b16438 | DOI Listing |
Environ Microbiome
January 2025
School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.
Carbon monoxide (CO) oxidising microorganisms are present in volcanic deposits throughout succession, with levels of vegetation and soil influencing the communities present. Carboxydovores are a subset of CO oxidisers that use CO as an energy source, which raises questions about the physiological and metabolic features that make them more competitive in harsh volcanic ecosystems. To address these questions, samples were taken from volcanic strata formed by eruptions from Calbuco Volcano (Chile) in 2015 (tephra) and 1917 (soil).
View Article and Find Full Text PDFSensors (Basel)
January 2025
Beijing Aerospace Automatic Control Institute, Beijing 100854, China.
The traditional method is capable of detecting and tracking stationary and slow-moving targets in a sea surface environment. However, the signal focusing capability of such a method could be greatly reduced especially for those variable-speed targets. To solve this problem, a novel tracking algorithm combining range envelope alignment and azimuth phase filtering is proposed.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Departamento de Ingeniería Electrónica, Universidad de Sevilla, 41092 Seville, Spain.
Variable-speed electrical drive control typically relies upon a two-loop scheme, one for torque/speed and another for stator current control. In modern drive control methods, the actual mechanical speed is needed for both loops. In practical applications, the speed is often acquired by incremental rotary encoders.
View Article and Find Full Text PDFBiomolecules
January 2025
United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Subtropical Horticulture Research Station (SHRS), Miami, FL 33158, USA.
Tea tree oil (TTO), acquired from (Maiden & Betche) Cheel, Myrtaceae, is a widely utilized essential oil (EO) due to its bioactive properties. The identification and quantification of TTO ingredients is generally performed by GC-MS, which provides the most accurate results. However, in some instances, the cost and time of analysis may pose a challenge.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Geography, Royal Holloway University of London, Surrey, UK.
Future climate projections are expected to have a substantial impact on boreal lake circulation regimes. Understanding lake sensitivity to warmer climates is therefore critical for mitigating potential ecological and societal impacts. The Holocene Thermal Maximum (HTM; ca 7-5 ka BP) provides a valuable analogue to investigate lake responses to warmer climates devoid of major anthropogenic influences.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!