A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A strong organic electron donor incorporating highly π-donating triphenylphosphonium ylidyl substituents. | LitMetric

The π-electron donor strength of a triphenylphosphonium ylidyl group (PhP[double bond, length as m-dash]CH-) was explored through its substitution onto a bispyridinylidene (BPY) scaffold. Electrochemical studies revealed that the new triphenylphosphonium ylidyl-substituted BPY is the most reducing di-substituted derivative reported to date (E = -1.55 V vs. SCE). By using a previously established correlation between the redox potential of the substituted BPYs and the corresponding substituent, a Hammett constant for the PhP[double bond, length as m-dash]CH- group was determined (σ = -2.33), establishing it as the most donating neutral substituent currently quantified. The BPY is readily oxidized by hexachloroethane to produce the corresponding dicationic bipyridinium salt as a mixture of isomers owing to hindered C-C bond rotation. In preliminary tests of the BPY as a reductant, dichlorotricyclohexylphosphorane and chlorodiphenylphosphine were reduced to the corresponding phosphine and diphosphine, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9ob01984gDOI Listing

Publication Analysis

Top Keywords

triphenylphosphonium ylidyl
8
php[double bond
8
bond length
8
length m-dash]ch-
8
strong organic
4
organic electron
4
electron donor
4
donor incorporating
4
incorporating highly
4
highly π-donating
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!