A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Axon Degeneration Is Rescued with Human Umbilical Cord Perivascular Cells: A Potential Candidate for Neuroprotection After Traumatic Brain Injury. | LitMetric

Traumatic brain injury (TBI) leads to delayed secondary injury events consisting of cellular and molecular cascades that exacerbate the initial injury. Human umbilical cord perivascular cells (HUCPVCs) secrete neurotrophic and prosurvival factors. In this study, we examined the effects of HUCPVC in sympathetic axon and cortical axon survival models and sought to determine whether HUCPVC provide axonal survival cues. We then examined the effects of the HUCPVC in an in vivo fluid percussion injury model of TBI. Our data indicate that HUCPVCs express neurotrophic and neural survival factors. They also express and secrete relevant growth and survival proteins when cultured alone, or in the presence of injured axons. Coculture experiments indicate that HUCPVCs interact preferentially with axons when cocultured with sympathetic neurons and reduce axonal degeneration. Nerve growth factor withdrawal in axonal compartments resulted in 66 ± 3% axon degeneration, whereas HUCPVC coculture rescued axon degeneration to 35 ± 3%. Inhibition of Akt (LY294002) resulted in a significant increase in degeneration compared with HUCPVC cocultures (48 ± 7% degeneration). Under normoxic conditions, control cultures showed 39 ± 5% degeneration. Oxygen glucose deprivation (OGD) resulted in 58 ± 3% degeneration and OGD HUCPVC cocultures reduced degeneration to 34 ± 5% ( < 0.05). In an in vivo model of TBI, immunohistochemical analysis of NF200 showed improved axon morphology in HUCPVC-treated animals compared with injured animals. These data presented in this study indicate an important role for perivascular cells in protecting axons from injury and a potential cell-based therapy to treat secondary injury after TBI.

Download full-text PDF

Source
http://dx.doi.org/10.1089/scd.2019.0135DOI Listing

Publication Analysis

Top Keywords

axon degeneration
12
human umbilical
8
umbilical cord
8
cord perivascular
8
perivascular cells
8
traumatic brain
8
brain injury
8
examined effects
8
effects hucpvc
8
indicate hucpvcs
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!